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ABSTRACT

The basic theory and analytical methods used im the development of accurate mic:
wave measurement methods and standards are presented.

Developments at the U.S. National Bureau of Standards during 1948-1968 are des-
cribed in which the above theory and analytical methods were applied.

These developments were in the fields of power, impedance, attenuation and phase

shift, and led to the establishment of National Standards and calibration methods at

frequencies from about 300 MHz to 30 GHz.

Key words: Attenuation definitions; attenuation measurement; barretter mount

efficiency; coaxial connectors; impedance measurement; microwave network
theory; mismatch errors; phase shift-meastuirement; power measurement;

reflectometers; wavegulde joints; waveguidle theory.



PREFACE

The purpose of this monograph is to show how microwave waveguide and circuit
theory was formulated and applied to the development of accurate measurement methods
and standards at the U.S. National Bureau of Standards.

The topics of power, impedance, attenuation, and phase shift standards and meas-
urement techniques have been selected for discussion. Appropriate research papers by
the author and his associates have been partially revised and updated for the above
purposes. In addition, new material, especially on attenuation definitions, has been
included.

It is not possible here to present a complete history of NBS research in this
area, nor to accurately describe the present state-of-the-art. However, an attempt
has been made to put the work in perspective by giving references to previous and
subsequent NBS pertinent research.

It is intended that this monograph will indicate the character and extent of the
research which must be performed in order to develop accurate microwave measurement
methods and standards at the highest level. It is hoped that the collected works
and discussions will be helpful and stimulating to other workers in the same general

field.
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APPLICATIONS OF WAVEGUIDE AND CIRCUIT THEORY TO THE DEVELOPMENT OF ACCURATE

MICROWAVE MEASUREMENT METHODS AND STANDARDS

R. W. Beatty
National Bureau of Standards

Boulder, Colorado

The basic theory and analytical methods used in the develop-
ment of accurate microwave measurement methods and standards are
presented.

Developments at the U.S. National Bureau of Standards during
1948-1968 are described in which the above theory and analytical
methods were applied.

These developments were in the fields of power, impedance,
attenuation and phase shift, and led to the establishment of
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1. Introduction

1.1. General

This monograph presents a formulation of waveguide and circuit theory with
selected applications to the development of accurate measurement methods and
standards. A portion of the research at the U.S. National Bureau of Standards by
the author and co-workers during the period 1948-1968 is described.

Although considerable work had been done prior to 1948 in the field of micro-
wave measurements at the M.I.T. Radiation Laboratory and other laboratories, much
remained to be accomplished before U.S. radio frequency and microwave standards
and calibration services could be established.

The theory of waveguides and of microwave circuits needed to be re-examined
and the foundations exposed and strengthened. The quantities to be measured needed
to be precisely defined, and the conditions under which the theory remains valid
needed to be clearly stated. New and refined measurement techniques and standards
needed to be developed. Errors needed to be analyzed and limits of uncertainty

evaluated.



In the following, the above points are illustrated with specific examples.
In Chapters 2 and 3, respectively, a formulation of waveguide and circuit theory is
given which is slanted towards measurement applications. Selected applications are
given in Chapters 4 through 7, respectively, for the topics of power, impedance,

attenuation, and phase shift.

1.2. Theory

Waveguide and circuit theory is presented in Chapters 2 and 3, respectively.
Although this theory must be considered well-known, it has previously not been
as clearly presented in a form convenient for measurement applications. Greater
attention is paid to fundamental aspects of the theory, the assumptions made, and
the conditiomns required for validity.

The waveguide theory of Chapter 2 applies mainly to lossless,! uniform cylin-
drical waveguides of arbitrary cross-section. A rigorous and general treatment of
this subject has been published (Kerns and Beatty, 1967). Much of the same material
is presented in this monograph, from a somewhat less general point of view, but with
specific applications in mind.

First, the basic terms "waveguide junction,”'"waveguide leads," "terminal
surface" and '"terminal variables'" are defined in section 2.1. Two sets of terminal
variables are discussed in section 2.2. One set consists of quantities v and i
which are generalizations of voltage and current. The other set are the complex
amplitudes a and b of the traveling waves which interfere to give rise to the gener-
alized voltage and current. These terminal variables are related to the waveguide
fields corresponding to a given mode in a given waveguide.

The theory of waveguides leading to modal equations is based upon assumptions
of uniform, cylindrical waveguide geometry, and freedom from dissipative loss and
from leakage. As shown in Chapter 2 the transverse fields for a given mode can
each be resolved into two components; one in the complex plane, and one vector (space)
component. The complex components denoted by the letters v and i are regarded as
generalizations of voltage and current. Under certain conditions, they may be made

to coincide with actual voltage and current in transmission lines.

'The case of small losses is not treated in Chapter 2, but is illustrated in a later
example (sec. 5.3),.



1t further develops that these variables may be referred to a given terminal
surface in a waveguide which is part of a waveguide junction (a microwave network
or circuit). When so referred, they may be regarded as terminal variables, similar
to the familiar terminal variables 'voltage" and "current" encountered in lumped
element network theory. It follows that conventional network theory may be applied
to the analysis of microwave circuits involving waveguides.

Power and impedance normalization are discussed and normalization factors are
defined. The consequences of some specific choices of these factors are explored and
a scheme for suppressing them for convenience in manipulating circuit equations is
given. The concept of '"characteristic impedance" is clarified.

General power relationships for waveguide junctions are examined and the real-
izability conditions (including lossnessness) are precisely stated. In addition, the
reciprocity condition is given in matrix form. Finally, representation of sources by
terminal variables and impedances or reflection coefficients is discussed together
with the simple, but important, equations for joining together elements of waveguide
circuits.

Following the presentation of the general theory, special theory for two-arm
waveguide junctions (Z-ports) is developed in Chapter 3, along lines considered
useful for analysis of measurement circuits. Some theory for 3-ports and 4-ports
is also developed.

Spbecial emphasis is given to the use of scattering coefficients and they are
used in developing equations for many basic concepts. For example, efficiency,
mismatch loss, substitution loss, transducer loss, insertion loss, and attenuation
of a 2-port network are all carefully defined and equations given. The concepts of
phase difference and phase shifts associated with a 2-port are introduced. Transmis-
sion phase shift, insertion phase shift, and differential phase shift are defined.
Analytical tools based upon the cascading of 2-port networks and upon the transfor-
mation of reflection coefficient by a 2-port network are presented.

The realizability, reciprocity, and lossless conditions on the scattering coef-
ficients of 3-port networks are given. Scattering matricos for circuit elements
such as directional couplers and circulators are given. Finally, the basic circuit
used in many measurement applications, consisting of a source, a 3-port network, a

detector, and load, is analyzed and équations are presented.



1.3. Applications

In Chapters 4 through 7, applications of the theory and analytical techniques to
the development of accurate measurement methods and standards are given.

The mismatch errors in the calibration and use of microwave power meters were
originally quite large. Application of the foregoing theory led to the reduction
of these errors and made possible the evaluation of 1limits of uncertainty as stated
in the calibration reports. In 4.2, the analysis and pertinent equations are
presented.

In 4.3, the development of an improved method for measuring efficiencies of
barretter mounts is described. This work resulted in the first accurate determination
of efficiencies of coaxial barretter moumts. The analysis in terms of scatteving and
reflection coefficients was found useful in later developments.

Applications to impedance or reflection coefficient measurement techniques and
standards are discussed in Chapter 5. The adjustable sliding termination described
in 5.2 is an improvement on previous designs. It employs a simple resistive strip
which can rotate and move relative to a short-circuit, in such a way as to produce
reflection coefficients ranging from zero to nearly unity. The entire termination
is designed to be slid 1nside a waveguide so that the phase of the retflection coef-
ficient can be varied. This has proven to be a useful tool in measurement applicatioms.

In section 5.3, formulas, graphs, and conductivity data are presented to aid
any laboratory in designing and evaluating impedance standards consisting of quarter-
wavelength short-circuited sections of coaxial line or rectangular waveguide. All
standard sizes are covered over a frequency range from 200 MHz to 330 GHz.

A number of interesting circuits yielding squared VSWR response are analyzed
in 5.4. An even more useful development is "magnified response.'” It permits very
sensitive measurements of small reflection coefficients or of small differences
between impedances which are alm@st equal. The application of these techniques
to a modified phasable load method of impedance measurement is indicated.

The adjustment of tuners for some impedance measurement applicaliovns is
described in 5.5. The use of tuners led to the development of the tuned reflectom-
eter, which, together with the quarter-wavelength short-circuit standard, became

the most accurate calibration technique for reflection coefficient standards.



An interesting variation of the tuned reflectometer is described in 5.6. It
consists of constructing a tuned reflectometer using rectangular waveguide components,
except for the output waveguide, which is coaxial. One then slides loads in the
coaxial section and adjusts the tuners belonging to the rectangular waveguide instru-
ments. Once adjusted, it is used to measure reflection coefficients of coaxial
terminations and devices.

The tuned reflectometer is also used to measure the reflections and losses of
waveguide joints or coaxial connectors by a sensitive technique described in 5.7.

There are many applications of microwave circuit theory to attenuation measure-
ments as discussed in Chapter 6. The subject of attenuation definitions is discussed
at some length in 6.2. Circuit theory is used to clearly show different results from
different definitions. Precise definitions suitable for highly accurate measurement
applications are formulated and the conditions of measurement are tightly specified.

The error due to mismatch often causes the greatest uncertainty in attenuation
measurements. Mismatch effects in cascade-connected attenuators are analyzed in 6.3
and mismatch errors in measuring fixed and variable atlenuaturs are treated in 6.4.
Usually, only the magnitudes of the reflection coefficients of the circuits and the
attenuators are measured or estimated when evaluating mismatch errors. Of course,
the phases are also involved, but it is assumed that they can take on any value,
and the 1imits of error are calculated, assuming the most unfavorable conditions.
Actually, the realizability conditions limit' the range over which reflection coef-
ficient phases can vary. Thus the limits of error calculated by the above method
may he too conservative in some cases. In 6.5, it is shown that the effect of
realizability on error limit calculations is practically unimportant except for
low-loss attenuators, below, say 1 decibel.

In most analytical techniques, an attenuator is represented by a simple 2-port
network. However, this model gives no information regarding the effect of imper-

fections of connectors or adapters. A more complicated model is required, and this

In sections 6.7 and 6.8, techniques for measuring attenuation are described.
The first makes use of the theory of linear fractional transformation of reflection
coefficient. The second technique is a simple measurement of power ratio, but is
refined to give unprecedented accuracy. Circuit theory is applied to evaluate

small mismatch errors which contribute to the uncertainty of the measurement.



The measurement of small attenuations, such as losses in waveguide joints and
in short sections o&f waveguide, by a 2-channel nulling method is described in section
6.9. A circuit for producing known, very small changes of attenuation or phase shift
is described in section 6.10.

The -topic of phése shift measurements and standards at microwave frequencies
was long neglected. In section 7.2, phase shift equations for 2-ports are presented.
The development of the tuned refle;tometer made possible one form of microwave phase
shift standard. The phase of the reflectometer output signal is made to closely
track the position of a short-circuit sliding in a precision waveguide. Phase
measurements then reduce to a measurement of frequency and of mechanical displacements
and dimensions. The errors in such a standard were analyzed in 7.3.

A modification of the tuned reflectometer circuit was developed using two
short-circuits sliding in waveguides of slightly different widths in order to produce
known, small phase shifts. This is the basic principle of the differential phase
shifter described in 7.4.

Finally, the definitions of phase shift of various terminal variables are
analyzed and equations are derived in 7.2. The concept of an ideal phase shifter
is examined. This section, together with 3.10, gives a number of basic phase shift

equations useful in the analysis of phase shift measuring circuits.

1.4. Conclusions and References

In section 8, it is concluded that the foregoing applications of the thcory
demonstrate its usefulness in developing accurate standards and measurement methods.
The steps in the development include precise definitions of the quantities to be
measured, development and evaluation of accurate standards and measuring techniques,
and the analysis and evaluation of errors.

A 1list of references, arranged alphabetically by the name of the senior author,
is given in section 9. The references not only support the work described but

indicate later work which extended or superseded the earlier work.



2. Basic Theory of Waveguide Junctions

2.1. Definitions

a. Waveguide Junctions

A "waveguide junction" is not simply a junction where some waveguides come
together and are joined where their walls intersect. The term has a broader meaning
but includes such simple junctions. For purposes of analysis, a waveguide junction
is considered to be an idealized representation of a given actual electromagnetic
device to which access is provided by means of waveguides.

Such a waveguide junction is linear and has uniform, lossless, cylindrical
waveguide leads which may be of arbitrary cross-section. It does not leak, or, in
other words, electromagnetic energy enters and leaves only thru waveguide leads.

In general, sources may be present inside the junction and there may be attenuated
modes present in the waveguide leads. However, in this monograph, these possibilities

are both excluded from consideration.

b. Terminal Surfaces and Terminal Variables

The outer boundaries of a waveguide junction are perfectly conducting surfaces
which prevent the flow of electromagnetic energy except inside the waveguide leads.
The waveguide junction may be considered to terminate somewhere inside the waveguide
leads at terminal surfaces which may be arbitrarily chosen. For convenience, they
are usually chosen to be planes perpendicular to the waveguide axes.

In order to provide a convenient measure of the flow of electromagnetic energy
in the waveguide leads, quantities such as v and i are defined which are derived from
the transverse electric and magnetic fields at the terminal surfaces. These quan-
tities are called "terminal variables" and usually a set of two suffices to charac-
terize the flow of energy in a given mode in a given waveguide lead. If more than
one mode is propagating in a given waveguide lead, there is a different set of

terminal variables associated with each mode.



2.2. v, i, a and b for Waveguide'

a. Introduction
It is convenient to define quantities denoted as v and i for waveguide that
behave in a similar way to voltage and current in lumped circuit element networks.
Then it becomes possible to apply conventional circuit theory to the analysis of
waveguide junctions and circuits.
The quantities called v and i are derived from the transverse components E, and

t

Ht of the electric and magnetic complex vector field amplitudes corresponding to a

given waveguide mode. For example, E, is written as the product of two factors, v

t
and ¢°. The factor v is complex and represents the time variation and phase of the
field. The factor e is a vector function which gives the relative strength and
direction of the field in the waveguide (i.e., the mode pattern).

If there is more than one mode propagating in the waveguide, then a different
v and i are obtained corresponding to each mode (also a different e’ and h").

We write'expressions for E and Hy in terms of complex and vector potential
functions and then obtain v, i, e’ and h® in terms of them. In order to make v and
i behave like voltage and current, it is necessary to examine power and wave impedance
relationships and then define power and impedance normalization constants W0 and ZO‘
The consequences of choosing these constants in different ways are discussed. For
example, by a suitable choice of Z,, v and i can be made to coincide with actual
voltage and current in a coaxial waveguide operating in the TEM-mode (transmission

1line).

b. Basic Derivation of v; i, e° and h°
For a given mode at a given terminal surface in a waveguide, we resolve E, and
He into factors as follows:
Et = v e", and

H, = ih', (2.1)

where v and i are complex and contain the information representing sinusoidal time
variation in the complex plane, and e’ and h® contain information about the relative

magnitudes and directions of the transverse field components. We call v and i

!The principal concepts and conditions underlying the definitions of these symbols
are given in Kerns (1967),



respectively,generalized voltage and current, and we call e’ and h° the basis fields
for a given waveguide mode.

Since E. and H, may be expressed in terms of complex and vector potential
functions, it is also possible to express, v, i, e and h® in terms of these func-

tions as will be shown.

c. Complex and Vector Potential Functions
Let the axis of the waveguides be the z-axis and let the direction of proﬁagation
be the +z-direction. Waveguide field equations may be derived from Hertz potentials
of the form

n=1x¢ €, (2.2)

where f is a function only of the transverse coordinates, ¢ is a function only of z,
e, is the unit vector in the +z-direction, and I satisfies the vector wave equation
v2I + k20 = 0, where k? = w?ue. ' (2.3)
We obtain a scalar wave equation
V2f + K*f = 0, (2.8
where the solutions for f depend upon the boundary conditions corresponding to a given

waveguide. We also obtain a one-dimensional wave equation in ¢ whose solution is
b = Ae" Y% + Be¥Z, (2.5)
where the propagation constant y = a + jB.

For TM (transverse magnetic) fields it can be shown (Kerns and Beatty, 1967) that

E

VxYxI = ¢'VE + K2f¢ez

H

JweVXI = jwe¢(foez), (2.6)

and for TE (transverse electric) fields,

E = -jouVxIl = —jwu¢(Vgxez)

1}

H = vxvxll = ¢'Vg + K’goe (2.7)

Z’
where g has been used instead of f because it is subject to different boundary
conditions.

Some examples of f and g functions for certain waveguide cross-sections follow.



For rectangular waveguide of width a and height b, application of the boundary
conditions yields:(Kerns and Beatty, 1967);

For TM-modes

f = 51n[—ﬂgﬁ sin(EIXJ
mn a b
2 2
o (0 :
mn \a b ( )
For TE-modes
€m = cos(mﬂf] cos(ﬁmq
a b
mr) 2 nr)?
Kin = (‘“J ¥ [‘"} . (2.9)
a b

For the TEM-mode in coaxial waveguide in which p denotes the radial coordinate,
we obtain

£

l

C1 In p + C

K# =0 (2.10)
In general, we can write for the transverse field components in the case of
TM-modes

e

G'VE = vel

H

¢ = jued(VExe ) = ih°, (2.11)

where v = ¢', €® « Vf, i = jwep, and h® « (VExe,) .

The corresponding relationships for TE-modes are

Ey = -jupo(Vgxe,) = ve'

H = ¢'Vg = ih°, (2.12)
where v « -jop¢, e’ « (VgXez), i o ¢!, and h? « vg.
The constants of proportionality are to be determined, and will be done so in

the most convenient manner in the following.

d. Power and Impedance Normalization

Consider the relationships for power P, (integral of Poynting's vector across

the terminal surface) and wave impedance Zw in terms ol Et and Ht. We write the
following
P = Re(W), where (2.13)
W=k [ E XH, +e ds, or (2.14)
2 t ot Tz

10



W = (Tv) % f onhooez ds, or (2.158)
W= (iv) - W, (2.16)
1
where Wy = 7 [ e’xh’-e, ds. (2.17)
W0 is a power normalizing constant to be chosen for convenience. For example,

if i and v denote root-mean-square (rms) complex amplitudes, it is convenient to
choose WO = 1, so that P = Re(Iv). Once the value of W0 has been chosen, it fixes
the product |e°h°| for a given mode in a waveguide.

Next, we write the following expression for the wave impedance ZW for a given

mode in a given waveguide

e xEF + e xe°
A R A 4 (2.18)
H i h° w

In this expression, E: and H; are the transverse components of the electric and
magnetic field waves traveling in the +z-direction, v' and i* are the corresponding
traveling waveé of "voltage' and ''current," Z& is the 'wave impedance'" of the basis
fields e’ and h®, and Z0 is an impedance normalization constant.

It can be seen that Z0 is proportional to the wave impedance ZW, and the constant
of proportionality 1/23 is real (since e’ and h® are not complex) and dimensionless
(since Zw and Z0 have the dimensions of ohms). Note that the dimensions of WO’ ZO’

v and i can be chosen in several different ways, but the choice used here is con-

sidered to be the most convenient for use in circuit analysis.
e. Examples of Waveguide v and i

(1) TEM-mode in Coaxial Waveguide

The familiar coaxial waveguide operating in the TEM-mode (transmission line mode)
is an interesting example of convenient choices of normalizing constants W0 and ZO.
Depending upon how they are chosen, v and i can be made to coincide with actual voltage
and current in the transmission line. This is shown as follows. It has been shown
(Kerns and Beatty, 1967) that the potential function f for the TEM-mode in coaxial
waveguide is of the form [see eq. (2.10)]

f = Cl in p + C,

11



where the cylindrical coordinates p, 6, and z apply, and the radii a and b, with
b > a, are used. Following eq. (2.11), let

0 1
= = = C e
e f 5

17
h = Co(fxe ) =L, e (2
3 Z p "2 7o i :
In the above equation, e, ep, and e, are unit vectors and-C2 = CSC'
The power normalization factor WO is
b
c,C
1 Z 0,0 . S 2mp _ Lo b
WO =7 [ e~ t!Z ds ) J —2_ dp = TleLZZII a (2.
g e
a
o s
(2.
(2
(2.
Now consider the actual rms voltage V and current I in the transmission line
terms of their line integral definitions.
b b
V=—lf}3t . d£=v—_1_fe°-e del|, or
vZ /2 P
a a
W
V=V\//E~——9-!Ln E, and (2.
€ 2wl a
0
I =
(2.
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20)
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23)

in

24)

25)



1t is apparent from inspection of eqs. (2.24) and (2.25) that we can obtain the

convenient relationships V = v and I =1 if we put Wy =1 and

zy = £ e b (2.26)
e 2T a

This is the well-known equation for the "characteristic impedance" of the coaxial
line. Although this represents the most convenient choice for ZO’ other choices
would be possible in which v # V and i # I. (This fact is not so well-known.)
if Zgy is chosen as above, it involves only the radii of the line and the
properties u and € of the medium inside the line. For a given line operating in
the TEM mode, there is only one valuc of ZO and thus, it is '"characteristic' of that
1ine. The name 'characteristic impedance' is apt in this case.
However, when modes higher than the TEM are considered, in coaxial waveguide
as well as other types of waveguide, the term "characteristic impedance'" is less ap-
propriate. In these cases, there is a v and i associated with each mode, but the line
integrals of Et and Ht depend upon the path and there is no single convenient choice
of W0 and or of ZO'
If one chooses Z0 for a given mode in a given waveguide, then Z0 is '"characteristic"
of that mode in that waveguide for that choice. However, since different choices might

be found convenient for different purposes, Z, is in the broad sense simply a normali-

0
zation constant and is not really ''characteristic' of either the waveguide or the

mode. 2

(2) TElO.Mode.in Rectangular Waveguide

Proceeding as in the previous section, we can obtain expressions for e® and h°®

starting with eq. (2.9) and applying eqs. (2.12), (2.17), and (2.18). They are

W
e =2 w, 0 sin(zzl e
'7.0 ah a 4
W
ho = -2 ZO . —% [sin(ﬂ‘—” e (2.27)
a a

Again, we consider some line integral definitions of "voltage" V, and '"current"

I, which are arbitrary in that we choose the path of integration. Suppose that we

2It is considered that if Ly were to be characteristic of a given waveguide, then there
could be only one value of Zy for that waveguide. Similarly, if Zp were to be charac-
teristic of a given mode, then there could be only one value of ZO for that mode.

13



choose V to be the line integral of electric field along the center of the waveguide
cross-section which bisects the wide dimension. Then

b b
= . = 0 .
vV = é (B nax ey dy = v é (€®) pax ey dy, or

N (2.28)
Zy ab

If we choose Wy =1 and Z, = 4(b/a)Zw, then V = v,

Now suppose that I is the total currcnt in onc of the wide walle. Then

a a
I=-[H +e dx=-ifh® e dx,or
0 0

7 W
1=i-‘E‘-’—9-—9. (2.29)
L ZW ab

If we again choose W, and Z0 as above, we find that

0
1= (. (z.30)

We would find it more convenient if I were to equal i. This can be arranged by rede
fining I; Suppose that the new 1, or ln represents the current in a strip of width w,
instead of the current in the entire wall. Let the strip be centered in the waveguide
wall. It can then be shown that In = i when w 2 0.406a, where a is the total width
of the wall.

If, on the other hand, we were to choose Z, = {%}2 %-Zw then I = i. We could
then redefine V to be the line integral over a shorter path. If the path length
were approximately 0.393b, then the new V would equal v.

In the above redefining of V and I, we could not take V larger than the line
integral of Et over the full height of the waveguide, and we could not take I larger
than the current in the total width of the widest wall. Thus, the limits between which

Z0 may be chosen to obtain simultaneously V = v and I = i are
b ‘M4 b
b3l 22 (3 3 e (2.31)

where
u
A R X i S f—i ohms . (2.32)
w f )2 €
\/1 - ( ] T

In the above expression, f is the operating frequency, fC is the cutoff frequency,

and 1 and £y ATe respectively the relative permeability and the relative permittivity.

14



The above example illustrates the arbitrary nature of the choice of WO and Z0

and shows some of the consequences of various choices.

f. Traveling Wave Amplitudes a and b
AnotheT convenient set of terminal variables are the voltage traveling wave

amplitudes a and b. They are related to v and i by

V=a+b a = %{V + Zoi)

Z

it
O

'
o

. 1 -
o b= z(v - Zpl) (2.33)

The power and impedance (or reflection coefficient) relationships are

W
P = WyRe(Iv) = WjRe[l- (@-F) (a+b)] = 20 (jaj2 - |b]?) (2.34)
Z Z
0 0
v - Z,1 Z -1
0
E = 0_ = ’ (2.35)
a v T+ Zol z ZO

where Z = Y. Let

z. -2, (Z./1)-1 % -1
W 0 _‘Y'w' "0 - W (2.36)

" 0
z, + 2y (B /2)+1 22+ 1

Fw =

Note that if Z0 is in ohms, Z&, the wave impedance of the basis fields, is a normalized

impedance and is dimensionless.

g. Other Traveling Wave Amplitudes
Two other sets of traveling wave amplitudes will be mentioned. They are sometimes
called power waves, since they have the dimensions of the square root of power.
One set of traveling wave ampl%tudes is very simply related to a and h and is
used to suppress W0 and Z0 from the power and impedance relations. This can be
convenient when carrying through a complicated analysis. The suppressed constants
can be reinserted after the analysis has been completed, if desired.

If we define a new set of terminal variables

a' = af-—, and b' =Db [—, (2.37)

then the power relationship is simply

P=lat|® - [br[2, (2.38)

15



and there is no change in the reflection coefficient

b _ b
aT = 3 (2.39)
Then
Z W
v = f_Q (a' +b") 2! = % f_Q (v + Z,1)
W VA
0 0
7 (2.40)
JWZ- i =a' + b b= L/ 0 v -z 1)
070 2 7 0
0

Another set of terminal variables is used in the analysis of tramsistor circuits,
for example, and is defined as follows (Kerns, 1967).

_11 :
am = . 2, (Vm + Zmlm)

oo

(z.41)

in which Zm is the impedance terminating port m.

The existence of different sets of terminal variables each designated as a and b

is sometimes confusing and can lead to errors if the basic definitions are not clearly

understood.

2.3, Parameter Matrices

a. Impedance and Admittance Matrices
The sets of simultaneous linear equations relating the pairs of terminal variables

of a waveguide junction can be written compactly in matrix form. For example, for a

total number N of propagated modes, we define the column matrices

5

Vi 1y
Va2 1

ve=| - , and 1= | - s (2.42)
VN N

We can then write the set of equations relating the v's and i's in matrix form

v =2Zi, or i = Yv, (2.43)

16



where

i1 %12 77 Ly
Zy1 Zyp 77 Iy

Zs= . . . s
Int Znz TTT Eww

and Y is the inverse of Z. The above Z and Y matrices are called the impedance and

admittance matrices, respectively.

b. The Scattering Matrix
If we consider the terminal variables a and b in a similar way, we obtain
b = Sa, (2.44)
where S is the séattefing matrix. It has elements similar to those of the above
impedance matrix, and the elements are called scattering coefficients.

Since there are several sets of terminal variables denoted by the letters a and
L, it happens that there are also different scattering matrices denoted by the letter
§. For example, the coefficients in the scattering matrix used to relate power waves
(Bodway, 1967) are sometimes called "S-parameters."

This situation can cause confusion. In order to distinguish between different
scattering matrices, it is necessary to examine the definitions of the terminal var-
iables that they relate.

In this monograph, the scattering matrix will relate the complex voltage wave
amplitudes a and b as defined in eq. (2.33).-

The relationships connecting Z, Y, and S, are written in matrix equations as
follows

Z=(+8)@ -8tz =yt (2.45)

1 -1

(zZZ-

o 1)(2261 + 1)

=5=(1-2V)(1 + ZDY)“l (2.46)

c. Power

(1) General
The total complex power input to a waveguide junction is by extension of
eq. (2.16), in matrix notation

W= i*W v, (2.47)
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where * denotes the Hermitian conjugate and

Wy O - 0

. Wy, -- O

0 - - - -

0 0 - Wy
It can be shown that
W= i%W Zi = vEY*W v, and (2.48)
P = Re(W) = a*(W 2.1 - s*W 21 )a (2.49)
0%o 0o )2

(2) TRealizability Conditions

A waveguide junction is said tn he '"realizahle" if its Z, Y, and X are such that
Re(W) > 0 for arbitrary v or i. The conditions thus placed on Z, Y, and S are the
"realizability conditions" for passive waveguide junctions.

Consider the impedance matrix Z, and define HZ = %(WOZ + Z*WO). Note that HZ
is Hermitian (H; = HZ). Since

Re(W) = Re(i*WyZi) = i*H,i, (2.50)

conditions on Re(W) are equivalent to conditions on the matrix of the Hermitian form
i*HZi.

We now distinguish (Kerns and Beatty, 1967) three cases of realizability, according
to whether the dissipation in the junction is positive for every non-zero i, for only
some i, or for no 1i.

(a) “Strict realizability': Re(W) » 0 for every non-zero i. In this case the
Hermitian matrix HZ and the associated form are said to be 'positive definite" (or,
sometimes, "strictly positive"). A useful criterion for this case is: a Hermitian
matrix is positive definite if and only if all its principal minors are positive.?®

(b) ™"Semi-realizability'": Re(W) > 0 for every i and Re(W) = 0 for some non-zero
i, In this case HZ and the associated form are said to be '"'positive semi-definite";

a criterion for this case is: a Hermitian matrix is positive semi-definite if and

only if it is singular and all its principal minors are nonnegative (Mirsky, 1955).

?For a proof of this theorem see Mirsky (1955). A "principal minor" of a matrix A
is a minor whuse diagonal is part of the diagonal of A. Thus a principal minor is
obtained by selecting rows and columns with the same sets of indices. Special cases
of the principal minors of A are the diagonal elements of A and the determinant of A.
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) "Losslessness'": Re(W) = 0 for every i. For this case it is easily shown
directly that HZ must be the (NxN) zero matrix.

For the admittance matrix Y and for the scattering matrix S, the matrices cor-
responding to Hy are Hy = 2(W Y + Y*W ) and Hg = (WyZg' - S*W 20%s), respectively.

Realizability conditions for Z, Y, and S may be summarized as follows: Real-
jzability requires the matrices HZ’ H, , and HS to be positive definite, positive semi-
definite, or zero, according as case a, b, or c applies.

At this point it is observed that certain simplifications may be obtained in the
above analysis and results by suitable choices of normalization. For example, if WO
js a scalar matrix (i.e. a scalar multiple of the unit matrix), it cancels out in

the statement of realizability conditions for Z and Y; similarly, if WOZ(;1 is a scalar

matrix, it cancels out in the statements pertaining to S (see table 2-1).

" Table 2-1. Realizability and reciprocity conditions under simplifying

normalizations.
z y , s
(Wo SCALAR, Z | (W, SCALAR, Zg 1
ARBITRARY) ARBITRARY) (WgZy ~ SCALAR)
REALIZABILITY Z+1*PD, Y+Y*PD, 1-S*SPD,
PSD, OR O. PSD, OR O. PSD, OR 0.
RECIPROCITY 7=z Y=y T =5

NOTE: 1. PD = POSITIVE DEFINITE, PSD = POSITIVE SEMI-DEFINLIE.
2. RECIPROCITY MAY OF COURSE HOLD SIMULTANEOUSLY WITH
ANY CASE OF REALIZABILITY.

d. Reciprocity
Provided that the parameters np, & (which may be complex) are symmetric tensors
(which may reduce to scalars) it can be shown that (XKerns, 1949a)

z é (EIXHII - E"XH') . nm ds = (), (2.51)

m=1 n

where E', H', and E", H" denote any two electromagnetic fields (of the same frequency)
that can exist in the given waveguide junction. From eqs. (2.1) and (2.17) it follows

that eq. (2.51) is equivalent to

i"wov' - i'wov" =0, (2.52)

where the ~ denotes the transpose of a matrix.
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To find the consequences of eq. (2.52) for Z, Y, we first inmsert v' = Zi',

v = Zi". After taking the transpose of the second term, Wwe obtain
?n - o 31 =
i (WOZ ZWO)l 0,

which implies

WoZ - ZWy = 0, (2.53)
since i', i" are arbitrary. Since Z = y! (and Z = Y_l), the relation
WOY - YWO =0 (2.54)

is an immediate consequence of eq. (2.53).

To find the conditions imposed on S we nse eq. (2.33) and find from eq. (2.52)
~n -1 v ~| -1 1" o=
a ZO WOb a ZO Wob = 0.
Hence, using b = Sa, we must have

-1 ar-1 _
Z0 WOS - SZ0 WD = 0. (2.55)

The reciprocity conditions eq. (2.52) and eq. (2.55) may be simplified by appropriate
choice of normalizations, and it happens that the appropriate choices are the same
as in the case of the realizability conditions considered above. Table (2-1)

furnishes a summary of all these relations in simplified form.
e. Sources; Joining Equations

(1) General

We have already noted that our basic expression for the power input contributed
by one waveguide mode, Wa = I;Va (for W; = 1), is of the same form as the expression
for input power at a pair of terminals in an altermating-current network. We shall

now consider two further funddmental relations that are required to establish the

basis of the application of equations of the form of network equations tc waveguide

problems,

(2) Sources

For simplicity consider a waveguide "junction" having just one waveguide lead,
in which just one mode propagates. We choose a terminal surface and consider the

terminal variables vy, il‘ We assume that the junction is linear (from an external
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point of view) but not necessarily passive. The most general linear relation con-

pecting Vi and il can be written
vy < Zglll + vgl (2.56)

or

i 7 Ygpvy toigps (2.57)
where Zgl’ Ygl’ Vgl’ ig1 are constants, The presence of sources may be manifested
in these -equations in two ways: in the inhomogencity of the equations (i.e. Vgl # 0)
or in a violation of the realizability condition as applied to Zgl and Ygl' The
latter possibility means for these 1 x 1 matrices Re(Zgl) < 0 and Re(Ygl) < 0, as
may be seen in table (2-1), It should be observed that eq. (2.56) and eq. (2.57)
respectively vepresent versions of Thevenin's and Norton's theorems.

‘ Alternatively, we may describe the source in terms of the terminal variables

by By The most general linear relation connecting these variables may be written

b1 = Sgla1 + bgl’ (2.58)
where Sgl and bgl are constants characterizing the source. This might be called Kerns'
theorem, after D. M, Kerns, The equation states that the general emergent wave b1 is
the sum of the wave bgl that would be emitted into a non-reflecting load and- the
reflected portion of the incident wave 2. From table (2-1) we see that violation

of the realizability condition for the 1 x 1 scattering matrix Sgl means |Sg1| > 1.

(3) Joining Equations

Suppose that a waveguide lead of one system is to be connected to a waveguide
lead of another system. We assume that the terminal surfaces associated with each
system haye been so located that they coincide when the connection is made (fig. 2-1).
The transverse components of E, H on the common terminal surface S are then given

by the equations

By = I vaels
H, = ) iah;, (2.59)

associated with the one system and also by the equations

Al

A\l 1
= [}
Et 2 Va€a
1 .1 “|
H, = ] ihd, (2.60)
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associated with the other. We assume

eg = e; 5 (2.61)
this implies
1
hY = -hJ, (2.62)
\ !1 /
]
ne—I|—=np
|
EH }E,_‘

A

/( S k
Figure 2-1. Coincident terminal surfaces.

since n = -n'. For the electromagnetic fields corresponding to eqs. (2.59) and (2.60)

to be continued properly across S, it is necessary and sufficient that

|

1
E = Et’ H = He. This means that it is in turn necessary and sufficient that
]
Va ® Va
. . '
i, = -1, (2.63)

for each mode involved. These are the joining equations of waveguide theory. They
are of exactly the same form as the equations in circuit theory that describe the
joining of two pairs of terminals. To verify this, comsider that the terminal pairs

shown in figure 2-2 are to be joined.

i —i
0----0-
VT Tv‘
O =0

Figure 2-2. An "equivalent circuit!
for joining.

With the sign conventions indicated in figure 2-2, circuit theory obviously requires
v =v',i=-i'.. (The sign conventions are determined by eq. (2.62) together with

the choice of n as the inward normal on Sm.)
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in the equations that characterize a waveguide junction, such as the matrix
equation vV = Zi, the number of variables is twice the number of equations. In a
waveguide junction characterized by a set of N equations, the electromagnetic
state has N degrees of freedom. However, if loads or sources® are connected at all
terminal surfaces and the joining equations are applied, the number of equations
becomes equal to the number of unknowns in the system. Thus, except for special
cases where the equations are not all independent, the terminal variables (and hence

the electromagnetic state) become determinate.

?A passive waveguide junction possessing just one waveguide lead (multimode or not)
is termed a "load" or a "termination"; if not passive, it is termed a "source."
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3. Introductory Network Analysis
3.1. Linear Network Parameters

a, Introduction
It has been shown in the previou§ section that network equations developed for
alternating current networks consisting of distinct circuit elements may also be used
in waveguide problems in which distinct circuit elements do not exist as lumped
elements, but are distributed in space.
These network equations are briefly reviewed as a point of departure to reintro-

duce scattering coeflficients and other pavameters used to relale wave amplitudes.

b. Terminal Variables

It is customary to provide access to a network by means of terminals, and in
most cases, these are grouped in pairs. We can have input terminal pairs to which
sources are connected to feed energy into a network, and we can have output terminal
pairs to which loads or terminations are connected to absorb or reflect energy emerging
from the network. Usually, there is a terminal pair to which a detector is connected,
especially in circuits used for measurement purposes.

The voltage v across a given pair of terminals, and the current i tlowing into
one terminal (and out of the other) are the terminal variables in common use. The
relationship between the terminal variables at one tcrminal pair and thosc at anothor
terminal pair is determined by the characteristics of the network. If all of the
network elements are linear, the relationship is given by a set of linear equations,
having coefficients which are independent of the terminal variables. These coef-

ficients are called network parameters.

c. Network Parameters
It is possible to obtain more than one set of parameters for a given network,
depending upon how the terminal variables are selected at the terminals. Three fre-
quently encountered sets of parameters for a two-terminal pair network (four-pole,

or 2-port) are shown in figure 3-1.
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The equations defining the parameters are given in three forms. The first form
is the usual set of two simultaneous linear equations. The second form is the cor-
responding matrix equation. The last form is the short form of the matrix equation,

where the matrices are indicated by single letters.

iy — ip

vi} tv,

Figure 3-1. Representation of a
fourpole (2-port)

_ i . \ ) .
Vy = Z33ip * 201, Vi 211 2121
. - = s v o= Zi. (3.1)
Vo T Iaatr iy W) (I Zp)d,
by = Mqvy vy [ Y11 Y12] (V1
. = ;1= Yv, (3.2)
1p = Ypqvp * Yoovps Uiyl \Yyp Ypullvy
_ - ] ) X
V1 = sz B12 vy A B v2
) ) = _ (3.3)
i, = Cv2 - D12; i, C D -i,)

The above matrices are called respectively the impedance matrix, the admittance
matrix, and the ABCD matrix (general circuit parameters). The ABCD matrix may also

be called the v and i cascading matrix.

d. Complex Wave Amplitudes a and b
Access to a waveguide junction is provided by means of waveguide leads. Terminal
surfaces chosen in the waveguide leads form part of the outer boundary of the waveguide
junction. The amplitude a of the voltage wave incident on the junction and the
amplitude b of the voltage wave emerging from the junction at each such terminal
surface are one type of terminal variables in common use. The terminal surfaces where

energy may enter or emerge from a waveguide junction are also called ports.

e. Parameters Associated with a and b
It is possible to define many sets of parameters relating a and b for a given
waveguide junction. Three of these sets of parameters for a 2-port network are shown

in figure 3-2, and defined in eqs. (3.4), (3.5), and (3.6).
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e,

d L

t
Figure 3-2. Representation of a 2-port waveguide junction with
terminal surfaces and terminal variables a and b.

by =8y521 7 5122 ™ 511 S120(®%1

= ; b = Sa (3.4)
by = Sp8p * Spp8y5 By Sy1 Sa2iiay
ay = g11by *g1gby (B €11 ®12((P1

= ; 8 = gb (3.5)
a; = 82101 * 22025 (3 821 822)1bg
by = T8y * Tyyby by Ty Tiz]|®2

= (3.6)
ay = Ipp2y * Tppby 13y Tor T220iby

The coefficients in the above equations are called scattering, gathering, and

cascading coefficients, respectively.

f£f. Other Terminal Variables
Another set of terminal variables v and i can be used with waveguide junctions.
They are generalizations of voltage and current and can actually represent transmission
line voltages and currents in cases where only the TEM-mode propagates. The param-
eters relating v and 1 for waveguide junctions are called by the same names as the
corresponding ones relating voltage and current. Still other terminal variables
could be defined by forming linear combinations of the ones already mentioned. How-

ever, terminal variables other than v and i, and a and b have not been widely used.

g. Network Equivalent to a Waveguide Junction

A network which shares an identical set of parameters with a waveguide junction
is said to be equivalent to that junction. Such equivalence may hold at only one
frequency at which the parameters are defined, or in the less usual case, might
hold over a range of frequencies.

For example, the parameters relating the terminal variables v and i for a
waveguide junction may be identical with those which relate voltage and curryent for
a network. In this case, the impedance matrices would certainly be identical. It
follows that all of the other parameter matrices would be the same as the cor-
responding ones for the equivalent network. This is true because each set of

parameters relating terminal variables is linearly related to each other set.
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Occasionally some difficulty may arise in identifying equivalent networks if,
for example, we are given a scattering matrix for a wavsguide junction and find
that the impedance matrix does not exist (the elements may be infinitely large).

An example is the following, in which the equivalent circuit is a single series

jmpedance Z, 'as shown in figure 3-3.

Z
)

o0

Figure 3-3. A fourpole having a single series
element.

By inspection, the admittance matrix is

y =L [ ! '1].
2, .11

1t follows from eq. (2.46) that the corresponding scattering matrix is

7. - 2oy - Z..) 27
S - 1 [ 1 o1 ~ Zoz 01 ]_ (3.7)
2y + (Zog * Zgy) 2Z4, 2y * (Zg1 - Zpg)
If we choose Z01 = Z02 = ZO’ then
(Z:/2.) 2
S = 1 [ 170 . (3.8)
(2 /2 +2 | 2 (/7

Application of eq. (2.45) in order to obtain an impedance matrix will reveal that
each of the elements is infinite. It is then said that the impedance matrix does

not exist.

3.2. The Scattering Matrix

a. General Remarks

The scattering matrix has an appropriate name as we can see from the example

below.

Figure 3-4. Representation of a multi-arm
waveguide junction with energy
incident in arm 1.
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As shown in figure 3-4, a wave of amplitude al_entering the waveguide junction
in arm 1 is scattered, and some of the energy is transmitted to each of the other
arms of the junction. (For simplicity, it has been assumed that the other arms have
nonreflecting terminations so that there are no reflected waves in these arms.) The
coefficients in the linear equations relating the amplitudes of the emergent waves
(the b's) to the amplitudes of the incident waves (the a's) are called the scattering
coefficients. The matrix of these coefficients is called the scattering matrix which
was defined more formally in eq. (2.44).

In general some scattering will also occur as a result of reflection. Since
scattering involves both transmission and reflection of energy, it is to be expected
that the scattering coefficients will be of two kinds; transmission coefficients and
reflection coefficients. This will be illustrated clearly in the case of two-arm
waveguide junctions (2-ports), to be discussed.

Much of the theory of two-arm waveguide junctions may be applied to waveguide
junctions with more than two arms, as will be shown below. Consider a waveguide
junction having n arms, all of which are terminated by non-reflecting loads except

h h

the pt and qt arms. This requires that all incident wave amplitudes vanish except

for ap and aq. The scattering equation b = Sa for the waveguide junction then reduces

to
b =S a + S a
p PP D pa‘q
b =S a_ +5S_ a,, (3.9)
q ap’p aqa”q
h th

considering only the emergent waves in the pt and q arms. This is of the same
form as that for a two-arm waveguide junction, so that one can for example determine
S S S and S s i ini

o0’ Spq’ Sqpe n aq by the gme techniques developed for determining Sll’ SlZ’
521, and SZZ of two-arm junctions, to be described.

b. Scattering Coefficients of a Two-Arm Waveguide Junction
Consider a two-arm waveguide junction with a source connected to arm 1 and a load

connected to arm 2. The reflection coefficient of the load is designated by I, as

L
shown in figure 3-5. The reflection coefficient of a load is defined to be the
ratio of the amplitude of the wave reflected from that load to the amplitude of the

wave incident upon it.
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b | —
l‘“"} > 2
1Zon o2

Figure 3-5. A two-arm waveguide junction connected
between a source and a load.

Referring to eq. (3.4) it can be seen that the input reflection coefficient T

1
can be written
5,,5,,T (s,,8 -~ 8;,8,,)1; + S
r. =g s 12721°L 12721 11722°°L 11. (3.10)
oy osoor 1-5S,,T
22°L 22°L
Note that if there is no reflection from the load (FL = 0), the only source of
reflection is within the waveguide junction, and
hl
- = (P]_) = Sl]_' (3.11)
a, FL—O

Therefore S11 is the reflection coefficient "observed looking into'" arm 1 with
arm 2 terminated in a non-reflecting load. We can say that S11 characterizes the
reflecting property of the waveguide junction for energy entering arm 1.

A similar argument with the above roles of arms 1 and 2 reversed will show that
S22 is the reflection coefficient "ubserved looking into" arm 2z with arm 1 terminated
in a non-reflecting load. Thus, the scattering coefficients Sll and S22 are reflec-
tion coefficients. We can generalize on the basis of previous remarks about cq. (3.9)
that any scattering coefficient of the form Spq is a reflection coefficient if p = q.

It can be shown conversely that when p # q, the scattering coefficient Spq is
a transmission coefficient. If the transmission coefficient is defined as the ratio

of the amplitude b2 of the wave emerging from arm 2 to the amplitude a, of the wave

1
incident in arm 1, when a non-reflecting load is connected to arm 2, then inspection

of eq. (3.4) shows that

2 =8 (3.12)

A similar argument applies to S and extension to Spq is straightforward.

122
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c. Effects of Moving Terminal Surfaces

The scattering coefficients of a given waveguide junction have been defined in
terms of wave amplitudes at certain arbitrarily selected terminal surfaces. If new
terminal surfaces are chosen, a new set of scattering coefficients will then apply.
Since only a simple change was made in the waveguide junction, one would hope for a
simple relationship between the new and old sets of scattering coefficients. That
this is the case may be shown as follows. Consider the new set of wave amplitudes
and scattering coefficients to be denoted by primes.

It is well known that 2 wave traveling along a uniform section of waveguide
experiences attenuation and phase delay as it progresses. If, as in figure 3-6, a
wave traveling to the right has an amplitude ai at terminal surface 1', it will have
an amplitude a; = aie-Y21 at terminal surface 1. Similarly, a wave traveling to the
left having an amplitude b, at terminal surface 1 will have an amplitude bi = ble—vil
at terminal surface 1'. Here we regard 21 only as a distance between two terminal
surfaces, considered as always positive, since we have not set up any conventions of

positive and negative displacement in this case.

1 1 2 2
o |
S 1
— ] g
Ir—ogl :_—g‘ lL—.bz b5
B bt ‘]2*—JIL Gp—
T |
g 14—12—4

Figure 3-6, Changes of locations of terminal surfaces
from 1 and 2 to 1’ and 2’.

Assuming that the waveguide leads are lossless, their propagation constants (y's)

will be jBl and jB,, and the following relationships will hold:

] 3 t -
- -iB1ta - -jB1%1
aq ae R b1 = ble
(-

- . .
a, = a,e 82 2, b, = b,e iB222

(3.13)

- - . - ' 1
We apply the definitions of S11 and 821 as in eqgs. (3.11) and (3.12) to S11 and 821,

obtaining
T 1 3
- ~j2B18, v -3 (B121+B24%,)
$11 Slle and Sy1 = $,,8 22l (3.14)
Interchanging subscripts 1 and 2 yields
v -j282% v -5 (B2R2+B12
522 S,5e 2%2  and 812 = SIZe J (82228 1). (3.15)

No such simple relationship would be obtained with impedances and admittances, and

this is one important advantage of using scattering coefficients.
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If we now designate the original set of terminal surfaces and scattering coef-
ficients by primes, eqs. (3.14) and (3.15) will still hold, but we will want to solve
them for 511’ 812’ 521, and SZZ' Upon doing this, it will be found that the algebraic
sign of the exponents will be positive instead of negative. The effect of shifting

a terminal surface to a new position in either direction should now be evident.

3.3. Reciprocity, Realizability, and Losslessness for 2-Ports

The relationships derived for waveguide junctions in general will be specialized
to apply to 2-ports. The meanings of these relationships in terms of energy flow will
be examined later.

In the following, the usual symbol Z0 will be used to designate the normalizing
impedance of the propagating mode (usually only one in each waveguide lead), and an
additional subscript will be added to designate the particular waveguide lead of the
waveguide junclioun (these waveguide leads are often identical, bul are sometimes quite
different from one another).

The power normalization matrix W0 will be taken equal to the unit matrix so that
it will disappear from the following equations. This is felt to be justified because
it seldom happens that we need to choose W0 otherwise, and if we do, we can refer back
to sections 2.2 and 2.3.

We will carry through the Z0 normalization factor because it is more often useful.
Cases continue to occur where the waveguide arms of a junction are not identical and

we do not wish to choose all of the Zo‘s equal.

a. Reciprocity
In terms of the scattering coefficients it has been shown that the reciprocity
condition is given by eq. (2.55). Assuming that the power normalization matrix is
the unit matrix, we have

zéls - szél. (3.16)

Performing the indicated multiplication for the 2x2 matrices, we obtain

S11 S12 S11 Sa1
Zo1 Zo;1 Zo1 Zo2
= (3.17)
521 S22 S12 S22
Zoz Zo2 Zo1 Zo2
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The resulting condition on the scattering coefficients is

S.,Z 01" (3.18)

12202 = S21?
It is often stated that reciprocity implies the equality of S12 and S21 but it is seen
that this is true only! when Z01 and 202 are equal. It is not always convenient or
appropriate to choose them equal, so the correct relationship above should be kept

in mind.

b. Strict Realizability
The condition of strict realizability, discussed in section 2.3, excludes
losslessness, and is given by the following matrix inequality

Re (W) = a*Hsa > 0, for arbitrary a # 0,

where Hg = Wyzpb - swzls, (3.19)

as in eq. (2.49). This condition requires that HS be positive definite, which in

turn requires that all of the principal minors of HS be positive. However, it is

not necessary to show that all of the prinecipal minors are positive, since this

follows automatically if one shows that the leading minors are positive. The leading
minors are the ones which progressively include the elements on the principal diagonal,
starting at upper left.

The equation for Hg for 2x2 matrices, assuming that WO is the unit matrix, is

_ 2 2 S g 3
L= 085417 1851 _{Sllblz S21522}

+

Zo1 Zo2 Zo1 Zo2
Hg = | _ - . (3.20)
_{512311 . S22521] L - 185,17 18,12
Zo1 Zo2 Zo2 Zo1
Thus, strict realizability requires that
z 1S, ]2
01, ____JLL___; <1,
Zoz 1 1844l
202 1S121°
ez 1z g,
Zop 1~ ISp2l®
1¥f new terminal variables are employed such that Siz = 51,7(2y,/Z4;) and
- . - . ' - ' 3
Sy SZIV(ZOI/ZOZ)’ then reciprocity requires S12 = Sp1- See section 2.2.g.
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[1 - Isll|2 B [821!2] [1 - ISZZIZ _ !812[2}
201 Zo2 Zo2 Zo1

511512, S21522

Zo1 202

2

> 0. (3.21)

On testing a scattering matrix to see whether it corresponds to a strictly
realizable waveguide junction, only two of the above inequalities need to be considered;
the last one, and either of the remaining ones. It is noteworthy that the first two
inequalities involve the magnitudes but not the phases of the scattering coefficients,

while the third inequality involves both magnitudes and phases.

c. Losslessness
While a lossless waveguide junction is not actually obtainable in practice, one
can approach this condition closely, and it is therefore important. The assumption
of lossless waveguide leads which has been made, is of comparable importance. It has
been stated, in section 2.3, that losslessness requires HS to be zero, which requires
each element of Hg to vanish, This yields the following restraints upon the scattering

coefficients:

1S101% I8, 5y

™~
)

0

—

|

S 5.8
12 12°11
- - 3.22
B 1-1s,,]? 5.5 5.5, (s.22)
02 21 221 21°22 22521

IS

It can be shown that an equivalent and more revealing set of restraints on the
scattering equations is the following:
lslll = ‘sZZI =S,
= =/ _g2
Zopl8211 = ZgalSypl = V2o 2o, (1)1,

and

Y12 * ¥p1 T ¥qp * o ¥pp * (20 - D, _ (3.23)
wher i i i

e wpq is the phase of Spq and n is an integer.

It is interesting to note that the condition of losslessness implies a partial
symmetry in that 'Slli = ]SZZI’ and a partial reciprocity in that 201|821l = ZOZISIZI'
Une, also notes that this condition requires every element of HS to vanish, while the
strict realizability condition requires that all of the principal minors be greater

than zero. Therefure, vne should not in general simply replace the inequality signs

in eq. (3.21) by equals signs to convert to the lossless condition.

33



3.4, Power and Efficiency
A two-arm waveguide junction is often connected between a source of energy and
a load as shown in figure 3-7.
This arrangement shown in figure 3-7 is frequently encountered in measurement
systems. The rate of encrgy flow into the junction P1 equals the incident power le
minus the reflected power Pp..

—bg }—»p

| ! WAVEGUIDE

|
{
i
0AD
! L
2o | duNCTION |z, b,
I
|
{
P

SOURCE

Figure 3-7. Diagram of a simple waveguide system with energy
flowing from left to right, with net powers P, and
P, and with incident and reflected powers P
and Pgy. I

The rate of energy dissipation in the load is PL, and the rate of energy dissipation in
the waveguide junction is P1 - PL' The efficiency nq of the waveguide junction is
defined to be the ratio of P, to Pl' An expression for the efficiency is developed

as follows: The net power P1 crossing terminal surface 1 to the right is

P p

1 = Prg 7 Py (3.24)

. - 2 - 2
where the incident power P , |a1| /741> and the reflected power Pp, |b1| /Zg1>
and therefore
lagl?
1
P1=—E~—~(1 - irllz); (3.25)
01
where Fl = bl/al‘
Similarly, the net power P absorbed by the load is
[by |2
P = - a- Irl*, (3.26)
02 )

where FL = az/bz.

The efficiency ny of the waveguide junction when energy is fed into arm 1 is

b

4

Z o1 - ;|2
. ______J;_;, (3.27)
1- |

P

PL_Zop |
1 Zo2

n

Substituting eq. (3.10) for T'., and solving eq. (3.4) for the ratio of b2 to

1

aj, one obtains

nl T e « (3.28)

Zo1 1S,712CL = |1 1)
VA - 2
|1 + 8,1

2 - -
02 STy 10815857 = 811522071
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The efficiency is seen to be not only a property of the waveguide junctionm,

but also of the reflection coefficient FL of the load. In the special case of a

non—reflecting load,

2
S F R b S L 5.29)
1la =0 - . .
2 ZOZ 1 1511‘

1f the positions of the source and the load with respect to the waveguide junc-
tion were to be reversed, it is apparent that the expressions for the efficiency n,
would be of the same form, but with subscripts 1 and 2 interchanged. Thus

181,170 - T 1)
ny = —= ¢ 12 - , (3.30)

- 2 _ - 2
Zop 11 - SqqTd 10512521 = 511522071 * S5l
and
Z [s,,1?
02 12

nyly o = —= + —2—— (3.31
a,=0 _ 2 -31)

L Zop 1 155,

T+ is interesting to compare eqs. (3.29) and (3.31) with the ineqnalities eq.
(3.21). The first two inequalities simply state that the efficiency of a strictly
realizable waveguide junction is less than unity for two conditions. The first
condition assumes that energy enters arn 1 and there is no reflection from the load

on arm 2. The second condition is similar except that 1 and 2 are interchanged.

3.5. Representation of the Source
If we consider a source connected to arm 1 of a waveguide junction as in figure

3-7, it is possible to show in a number of ways that

a; = by *+ byTlq, (3.32)
where ay is the amplitude of the wave in arm 1 incident upon the junction, bG is the
amplitude of the wave that the generator would emit to a non-reflecting load,? bl
is the amplitude of the wave reflected from the junction in arm 1, and Ta is the
reflection coefficient of the source. It is considered desirable to build confidence
in this relationship by giving alternate derivations, since it is widely used in

circuit analysis.

a. From Linear Relation for Source and Joining Equations

For convenience, the wave amplitudes referred to in eq. (2.58) will be primed,

2 > . . .

It 1s assumed here that the generator is unaffected by load changes. This is not
true in general, but is approximately true if isolation or buffering is employed
between the active source and terminal surface No. 1.
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and bgl and Sgl become respeutively bG and I Then the diagram of figure 3-8

represents the situation when a source is joined to arm 1 of a waveguide junction.

The joining equations are evidently

a, = b
1 1’
1
by = 23, (5.33%)
d
an b 1
i -
o 9 | wavesuioe
S0URCE .
E“bﬁ_ JUNCTION
i
1

TFigure 3-8, Represcentation of e waveguide junction
connected to a source of energy.

Substituting these into the modified eq. (2.58) yields eq. (3.32). Note that the

a's and b's of eq. (3.32) are chosen in different directions than in section 2.3.e.

b. From a Constant Voltage Generator

If we postulate a constant voltage source as shown in figure 3-9 and relate a

and b to v and i in the usual manner, it is found that eq. (3.32) can again be

obtained.

e [
4 L .

i
Figure 3-9. A constant voltage generator with a waveguide output
having either terminal variables vy and i) or a;

and by .
The steps are as follows:
vy = et il
Zg L+ Tg
a1+b1=e-;—~(al-b1)=e~1_r (8 - by),
01 G

2a,(1 - TyTg) = e(1 - Tg),

1 e
a, = ——— . 12 - 1)
1T T {2 G ) (3.34)

We define b, as the amplitude of the emergent wave from the generator (a1) when a
non-reflecting load is connected U‘l = 0). Thus

bg = 2 a-rg. (3.35)
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Then it follows that

b
ay = —l (3.36)
1 - rlTG
or
a; = bg + b T, (3.32)

c. Summation of Wave Reflections
Supposing that a wave amplitude bG emerges from the generator, one can consider

the multiple reflections that take place as shown in figure 3-10.

L +——T

SOULIRCF

—bg
be T +—]
b T
b I7 I .
—beh Ty

3.2
LR

ETC.

Figure 3-10. Representation of multiple reflections at a terminal
surface in the waveguide connected to an energy source.

The sum of wave amplitudes reflected toward the generator is

by = bgly[1 + (T + (rGrl)2 + ...,

or
b.T bb
bl = __.._E_..].'__, or bl = G'1
1 - I‘Gl"l al - erl
or
a; = by + b Tg, (3.32)

3.6, Net Power and Available Power

a. Net Power to a Waveguide Junction
Suppose that a source is connected to a waveguide junction as shown in figure

5-7. The net power delivered to the junction is

|a1|2 !bG]? . 1- lf'llz

. (3.37)
201 Zo1 11 - rgryl
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The components of this power associated with the incident and reflected waves are

respectively
Ibgl? 1
Pry = ’ 2’
Zg1 |1 - 10y
and
[bgl? IT; )2
Ppy = —— ¢ . (3.38)
Zop 11 7 rghyl

It is sometimes erroneously assumed that the incident power from a generator is
always independent of the load. However one can see from the above equation that this

can be true only if the generator is non-reflecting, or FG = 0.

b. Available Power from Generator
It is seen above that the net, incident, and reflected power from a generator all
depend upon the reflection coefficient Fl of the effective load terminating the
generator. It is well known that the net power will be maximum when the load impedance

is the complex conjugate of the generator impedance, or when

Z1 = Zg. (3.39)
This condition in terms of the corresponding reflection coefficients (remembering that
Z01 is real for lossless waveguide leads) is

Fl = PG. (3.40)

The net power output from the source under this condition is termed the available

power PA’ and is obtained by substituting eq. (3.40) into eq. (3.37), as follows:
2
_ Ibgl® 1
- 2
Z01 1 !PG[

The components of the available power associated with the incident and reflected waves

A (3.41)

respectively are

Par = Pel” L - A >
ZD]. (1- - ‘FG|2)2 1 - \rGtz
and
b.)? r.l? ra.l?
Pg lel® — =7, -—i-ﬁi_—;. (3.42)
Zg1 a - Irgl® 1 - (1l
Compare these to the net power PO delivered to a non-reflecting load,
[bgl?
PO = . . (3.43)
01

Thus PO is generally less than P, except when the generator is non-reflecting (TG = 0),

and then they are the same.
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3.7. Mismatch Loss

a. Mismatch Loss in General
We define mismatch loss LM as the ratio in decibels of the power PM absorbed

a matched load to the power P absorbed by a mismatched load, when these loads

by
are alternately connected to the same source (generator), or
Py
Ly = 10 logy, ;——. (3.44)
MM

It is necessary to undcrstand what is mcant by tho terms "match' and ''mismatch,"
and their meanings will be discussed later.

One sees that the above mismatch loss is simply a special case of the ratio of
the powers absorbed by two different loads which are alternately connected to the same

generator. If the load initially connected has a reflection coefficient ir the load

1,

finally connected has a reflection coefficient frl, and the genérator has a reflection

coefficient TG’ the ratio expessed in decibels is

|*r, |2 py

LC = 10 log10 = 10 log10 E— (3.45)
|2 R

1
and is called (Beatty, 1964a) the comparison loss. An expression of this form is
widely used (Beatty and MacPherson, 1953) in the analysis of mismatch errors in power
measurements.

If one is given iPl expressed in decibels referred to some convenient level, one
subtracts LC in order to obtain fPl. Supposing that the load initially connected
were matched and the load finally connected were mismatched, then eq. (3.45) reduces to

eq. (3.44), which gives the power loss in decibels due to mismatch.

b. Meaning of Mismatch
The term "mismatch" implies that other than matched conditions exist. This is
clear enough, but there are various interpretations of the term '"match." In a manner
of speaking, one impedance is said té match another when the two are identical.

Thus, a load that matches a given generator yields the condition

However, the concept of a conjugate match is well established and the conditions are

given by eqs. (3.39) and (3.40).
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One could argue that a conjugate match is really a mismatch since the two
impedances involved are not exactly equal to each other. The resistive components
are equal, but the reactive components have opposite sign. However, the word
"matched" is commonly used to mean adapted, fit, or suited. Tor cxample, a married
couple are said to be well matched if they complement each other. Thus the word
"matched" can have various meanings other than "equal." In precise work, we must
be careful that we understand just what meaning is implied.

It is said that a load matches a waveguide when its impedance equals the charac-
teristic impedance of the waveguide, or Z, = Z and Pl = 0. If Z01 is real, then

1 01

this type of non-reflecting match or Z, match may be equivalent to a conjugate match,

0
providing that the impedance Zg of the generator feeding the waveguide also equals

ZOl‘ However, if 201 is complex, a non-reflecting or Z0

result in maximum power absorbed in the load, although there will be no retlection of

match will not in gemneral

energy back towards the generator.
One should be aware that other types of impedance matching have been defined
in addition to those above, so that the terms '"match' and "mismatch'" should be used

with care. A load that is matched in one sense, may be mismatched in another.

c. Conjugate Mismatch Loss
A generator delivers its available power PA when terminated in a load which
provides a conjugate match as mentioned above. When a different load terminates the
generator, the net power delivered, Pl’ is less. The ratio of PA to Pl’ expressed?

in decibels, is the conjugate mismatch loss MC:

la-]
>

[1 - 1gryl?
MC = 10 1og10 — =10 10g10 .
P, (1 - Jrgl®@ - Iyl

(3.46)

The conjugate mismatch loss MC cannot be negative, since Py is either equal to

or greater than P In the simple case when the generator is non-reflecting (FG = 0),

1

the conjugate mismatch loss reduces to

= 1
[MC]FG=0 = 10 loglo[m]. (3.47)

One sometimes finds this expression given for mismatch loss without the statement

that it requires a non-reflecting generator to be correct.

3This follows from eqs. (3.37) and (3.41).
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d. The Z0 Mismatch Loss

When a transmission line or waveguide is terminated in such a way that there are
no reflected waves, the impedance of the termination equals or matches the charac-
toristic impedance of the transmission line or waveguide. If the generator were to
have the same impedance, then maximum net power would be delivered to the load,
assuming of course that there were no losses in between. If one were then to connect
a different load, there would be less .power delivered, and a mismatch loss would result.
The expression for mismatch loss would be eq. (3.47).

However, the generator is not always non-reflecting so that the Z0 mismatch

1o0ss is

J

M 101 0 101 1 - FGT1|2 (3.48)
= 08,y — = 0g, —————, .
Z, 10 P, 10 4 Iflfz

It is possible for this expressiuvn Lo become negative (when Pl > PO), but this

can occur only when rG # 0.

e. Difference Between Conjugate and Z0 Mismatch Losses

It has been observed that the conjugate mismatch loss and the Z0 mismatch loss
are the same when the generator is non-reflecting, and are given by eq. (3.47). In
general, however, these two quantities are not the same and their difference is given

by

P
= = 1
MC - M, =10 log;, — = 10 log,, —
0 PO 1 - |FG|

o=

(3.49)

This is the ratio expressed in decibels of the available power from the generator
to the power which would be absorbed by a non-reflecting load connected to that

generator.

3.8. Transmission Properties of 2-Ports
Enough theory has already been developed to enable calculation of the net power
transmitted through a 2-port. For example, the net power input to arm 1 may be cal-
culated from eq. (3.37) and the net power output to a load connected to arm 2 is then
obtained from eq. (3.28) for the efficiency. In terms of bG and Tas the scattering
coefficients of the 2-port, Zgps and the reflection coefficient Iy of the load,
the net power transmitted to the load is
_Ioglz 5,020 - |12

L - - - =
Zo2 [(1 - 89T (1 = SguT) - 84,58,9T6T ]

(3.50)
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It is often desirable to compare the transmission properties on two 2-ports, and
this problem has given rise to the concept of substitution loss which will be defined.
The allied concepts of transducer 1loss, insertion loss, and attenuation are special
cases of substitution loss, as will be shown.

In the following, unless otherwise stated, it will be assumed that the generator
connects to arm number 1 of the 2-port and the load connects to arm number 2. This
will allow a simpler notation. It then follows that a reversal of these connections

will require a reversal of the subscripts 1 and 2 in the equations.

a. Substitution Loss
If one 2-port is removed from between a given generator and load, and another
Z-port is substituted in its place, the net powers absorbed by the load under the
initial and final conditions will have the following ratio, expressed in decibels:

i i £ £ £, £
Lo = 10 Togy, —L = 20 1o 85100 - "Sq4TE) (1 - 78551 ) - "Sq57S5976TL]
s - 10 810 |7

i i
P 5001 - 7834Tg) (1 - 785,T)

(3.51)

i. i
812 5217¢M]

where the front superscripts i and f denote initial and final conditions, respectively,
and it has been assumed that the act of substituting one 2-port for the other does not
change the characteristics of either the generator or the load.

The above expression applies to cases in which the two arms of the waveguide
are dissimilar, and/or have different propagating modes, as well as to the more usual
case in which they are identical and the same mode propagates in each.

The suhstitution lass LS’ as defined above may range from -« to +x, and upon
assuming negative values, could be regarded as a gain, rather than a loss. This
continues to hold true even when we exclude "active" 2-ports such as amplifiers, for
the final 2-port might be a better transducer than the initial 2-port.

The substitution loss may be restricted to positive values by specifying certain
characteristics for the initial 2-port, or for the generator and the load, as will be
discussed later.

Actually, the substitution loss most closely corresponds to what one can meas-
ure, since even if initially no 2-port device is placed between generator and load,
one must still have a joint or connector. When very accurate measurements are to be
made, it is not permissible to neglect the reflection and dissipative loss of the
connector (Beatty, 1964), so that it must be considered as the initial waveguide
junction. As shown in figure 3-11, one always measures the substitution loss, even

when the initial waveguide junction consists only of a connector.

42



A step attenuator, in which one attenuator is removed and another inserted in
jts place, is an excellent example of the need for the concept of substitution loss.
This concept may also be applied to the case of a smoothly variable attenuator which
may be regarded as though one removes an initial attenuator (corresponding to the
jnitial setting) and substitutes in its place another attenuator (corresponding to
the final setting) even though one does not physically remove the variable attenuator
from the circuit. Thus it is analytically equivalent to a step attenuator, and the

substitution loss concept applies.

/ CONNECTOR
(o)
INITIAL
CONDITION
1

> CONNECTORS

/’

(b}
WAVEGUIDE FINAL
JUNCTION CONDITION

1 2

Figure 3-11, Insertion of a waveguide junction into a waveguide system,
(a) Initial condition—one connector pair. (b) Final condition-—
waveguide junction core and two connector pairs.

b. Transducer Loss
As a special case of substitution loss, consider that the initial waveguide
junction is a perfect transducer and transmits all of the available generator power
PA to the load. In order to do this the perfect transducer must not only be lossless,
but must transform the load impedance to the complex conjugate of the generator
impedance. The substitution 1nss is then ohtained from eqs. (3.41) and (3.50) and

is called the transducer 1loss:

P Zoo (L - 8;,T)(1 - S, ,I'') - 5,8, .T.T, |2
7= 10 10g10_5=10 log,, 02 11°G 22°L 12721 G'L' | (3.52)

Py Loy [Sp12 - Irgl®@ - Irpl®)

L

It follows from the above equation that the transducer loss of a passive 2-port
cannot be negative. It is a measure of how closely the performance of the 2-port

approaches that of a perfect transducer connected between a given generator and load.
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Although the transducer loss is felt to be a useful concept, any attempts to
measure transducer 1loss will be in error by the amount by which the initial 2-port
fails to be a perfect transducer, unless the transducer loss of the initial 2-port
can be closely estimated, and added to the observed loss.

Like substitution loss, transducer loss may apply to 2-ports having dissimilar
arms, and/or -dissimilar propagating modes in each arm. It cannot be used to specify

a property of a 2-port since T, and T, are involved in eq. (3.52).
prop P G L

c. Insertion Loss
Another special case of substitution loss is the insertion loss.* Here it is
assumed that the initial 2-port is a perfect connector or adapter, which has no dis-
sipative loss and introduces no reflection or phase shift. The initial power is given

by eq. (3.37) substituting Iy for T and the final power is given by eq. (3.50), so

1’
that the insertion 10ss 1s
i
*p 7 ] - 8y TR) (1 - SonTr) - S,,S,.Tal |2
L, = 10 log L log 02 11'G 22°L 12°21°G'L . (3.53)
1 10 ¢ 10 1, 1S, (1 - T.r )|z :
P 01 21 G'L

L
It is apparent that the insertion loss is normally positive, but could be nega-

tive; for example, in the case where the load does not provide a conjugate match to
the generator, and the 2-port which is inserted is lossless and does provide a
conjugate match.

The idealized initial condition of a perfect connector may perhaps be more closely
approached in practice than the initial condition of perfect transducer, and hence
the insertion loss may be more accurately measured than the transducer loss. Neither
can be used in general to specify the characteristics of a 2-port, since generator
and load characteristics affect both. However, they both become equivalent in the

case of non-reflecting generator and load to be discussed below.

d. Attenuation® or Characteristic Insertion Loss
A concept which is useful for specification of a characteristic of a 2-port is

its attenuation, which is the transducer loss or the insertion loss of the 2-port

L*In.'d_le'IRE definition of Insertion Loss see p. 75 of IRE Dictionary (1961), the
definition is "fuzzy" because nothing is said about the initial connector which is
opened to insert the device.

SSee section 6.2 for further discussion of definitions of attenuation.
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when placed in a non-reflecting system. Making the substitution ', = I' = 0 in

eq- (3.52) or eq. (3.53) yields

Z
A =10 log . |-02 . 1 | (3.54)
01 21

In attempting to measure the attenuation of a 2-port, one should note that errors
will be produced by any failure to meet the assumed initial conditions, and the condi-
tion of a non-reflecting system. The actual quantity measured will be the substitution
10ss, and the error may be analyzed by comparison of eqs. (3.54) and (3.51).°

In the special but often encountered case in which arms 1 and 2 of the 2-port

are identical, it is convenient to choose Z01 = 202, and its attenuation is

[Al, -, ° 20 log;, (3.55)

01 EN

It is apparent that }Sle may be determined by measuring the attenuation of the
z-purt, provided that we specify Z01 and ZOZ' Similarly, |812| may be determined by
connecting the generator to arm 2 and the load to arm 1.

The attenuation of a waveguide junction’ for energy traveling into arm 2 and out

of arm 1 is

(z .
A, = 10 log,. |2+ . L | (3.56)
2 10 7 ]S ‘2

02 12

The difference between the '""forward" and "backward' attenuations is

201521

02512

A, - Ay = 20 log,

2 1 ‘ (3.57)

It is interesting to note that a waveguide junction which satisfies the recipro-
city condition (Z,;S,, = Z;,5;,) has the same "forward" and "backward" attenuations.
This is one test for reciprocity, but is not a sufficient condition, since it tells

nothing about the phase relationship between 512 and 821.

e. Components of Losses
It is convenient and instructive to separate the substitution loss and its
derivatives into components, one associated with the dissipation of energy, and

Lo 1 . . Y
LUT ULne Dl WAL HLSmalClle

*A detailed error analysis is given later in sections 6.4, 6.5, and 6.6.

fOue can specity the attenuatlon between any two arms of a multiport having all of
1ts arms terminated in some specified manner to passive loads.
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The net power transmitted to the load equals the input power multiplied by the
efficiency of the: 2-port. If the available power from the generator is given, then
the input power to the 2-port may be obtained from the conjugate mismatch loss. Thus
two quantities, (1) the conjugate mismatch loss and (2) the efficiency, are sufficient
to determine the power absorbed by the load, if the available power from the generator
is given. (1) is associated with mismatch, and (2) is associated with the dissipation
of energy.

It is evident that substitution of another 2-port for the initial one will cause
a change of power absorbed by the load, and that the change will be equal to the

changes of (1) and (2) above. Thus the substitution loss may be written

. i
- (f i ni -
Lg = (M, - ™M) + 10 10g10[g—} = (Lgly *+ (Lg)p- (3.58)
n

Referring to eq. (3.46) we can write

2 .
1 - rGfrl 1- ]1r1|2
(Lgdy = 10 logy, ——~w—*;—- . —————E—~—; > (3.59)
1-r14Ty 1 - rll
and referring to eq. (3.28), we can wWrite
3 2
1821 1 - fszer 1 - [fr1|2
(Lg)p = 10 logy, . ‘ . - s (3.60)
fg 1- 3 ¢ 1 - |, |2
21 22°L 1

where Fl is given by eq. (2.12).

The substitution loss is obtained by adding eqs. (3.59) and (3.60), which yields

i £ £
S, 1-Tfs.r 1-r.fr
2 2271 G
Lg = 20 log y|—2 - _ . L. (3.61)

£ i i
Spp 1= TSy, 1 -Tg0y

It is apparent that substitution of eq. (3.10) into eq. (3.61) will yield eq. (3.51),
verifying that eq. (3.61) does represent the substitution loss.
The components of transducer loss may be obtained by appropriate specialization

of eq. (3.58) and are

|1 - reryl?
[Le]y = 10 log , (3.62)
o Voa - rglna - g
and
[Lply = 10 logyy =, (3.63)

where ny is given by eq. (3.28).
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gimilarly the components of insertion loss are

1-rT.r0,.012 1- |r;]?
. G L
[Lyly = L0 loglol — rl . T . (3.64)
G'L 1
and
1
[L;1p = 10 log,, = (3.65)
n
Finally, the components of attenuation are
[Aly = 10 log;y ————— (3.66)
10 o .
1 - 18,
and
Z 1 - [S.,]2
0?2
[A]D = 10 loglo —_— *‘S*—‘}%— . (3.07)
o I8l

Comparison of eq. (3.67) with eq. (3.29) shows that the component of attenuation
associated with dissipation may also be written

1

[AI]D = 10 logg (3.68)

[nl]a2=0

3.9. Maximum Transmitted Power
The conditions for maximum transmission of power to a load are given with
reference to figure 3-12, in which two lossless tuners are shown connected one on
each side of the waveguide junction.
First, the maximum power available from the generator must be obtained at the
input to the waveguide junction. The conjugate match Ty = fb must be obtained by
adjustment of the tuner Tv’ and the generator will then deliver maximum power. Since

Tv is lossless, maximum power will be obtained in arm 1 of the waveguide junction,

and the conjugate match ry = f£ will apply there.

2
I

]
—

|
i
|

WAVEGUIDE |

JUNCTION | T ! LoAD

I
i
|

. i
i !
Ig==ln [=—T Lie—ly L -0

I

1

1
GENERATOR | Ty

[

1

Figure 3-12. Two lossless tuners attached to waveguide junction in order
to obtain maximum power to load.
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Second, maximum power must be obtained at the output arm of the wavguide junc-
tion, arm 2. This will occur when Ty = Féi’ where Tos is the reflection coefficient
of the equivalent generator at that terminal surface. Under this condition, it is

evident that the efficiency of the waveguide junction is maximum. It is also evi-

U is lossless, the condition rL=Te will also apply.

In practice, adjustment of tuners in the above sequence would not produce the

dent that since T

maximum transmission of power with only one adjustment of each, since the second
adjustment would in general upset the conditions achieved by the first adjustment.?®
Rather, a series of adjustments converging upon the desired condition might be

necessary.

a. Maximum Efficiency

The efficiency of a two-arm waveguide junction was seen to depend upon I the
reflection coefficient of the load. With the load terminating arm 2 of the 2-port,
the»efficiency ny is given by eq. (3.28). One expects that the efficiency would have
a maximum value URTY for a particular value FM of the reflection coefficient of the
load.

The following problem is often of interest. Given the characteristics of the
waveguide junction (for example, the scattering coefficients and the characteristic
impedances of the waveguide leads) calculate FM and UETYE The solutions will be given,
one based upon analysis of eq. (3.28), and the other based upon the maximum power

considerations discussed previously.

(1) Gradient of Efficiency

According to eq. (3.28), efficiency is a function of Tps which is complex, and
one can.plot contours of efficiency in the I;-plane. Maxima and minima will occur
when the gradient of ny vanishes.

The gradient of n, is

N, . . .an
Vny = ?‘F | 4. ?w SR — (3.69)
L 'a|rL| Lr | Y

®There are special cases in which the second adjustment would not upset the first.
For example, when the waveguide junction is an isolator,
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Both components of the gradient vanish at a maximum point. In order for the ¥, -

component of the gradient to vanish,

—2201|521|2(1"FL|2)|FL[[lszzlSin(Wz2+wL) + I512521"511822]1511]Sincwu'wll+wL)]

_ 2_ _ 2712
Zopll1-8y5 Ty 12-1(S155,1-8118,2)T #8111 71

(3.70)
where Uy is the phase angle of (812521 - 811322). It vanishes when
572 sin(¥yq - ¥y - Uy
- _— = - , (3.71)
(512521 7 5115229511 sin(hy, + Wy

where Yy is the phase of Ty+ The solution of eq. (3.71) for Yy gives the argument
of the reflection coefficient of the load for the maximum efficiency point. This
solution is independent of [Ty|.
In a similar way, it can be shown that the [Ty |-component of the gradient
vanishes when
ATy |? - B|r | + A =0, (3.72)
where
A= I8yl cosChyy * ) + [(S58y1 = 51955208141 cosCiyy - vy - ¥y,
and
= - 2 2 _ - 2
B o= (1 - [81q0® + 155517 - 1815551 - 81155217
Note that Uy has been substituted for wL in A,
The solution for Ty is then
Iy
e . (3.73)

2A
Substitution of Iy for Iy in eq. (3.28) will then give U the maximum efficiency:

Z 18,1121 - |1y|?)
nyy = —% - . le - g . (3.74)
02 117 SpaTyl® = 10812557 = 5195529y * Sp4
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(2) Maximum Efficiency from Maximum Power Considerations

Referring to figure 3-13,

WAVEGUIDE
GENERATOR J Ty UNCTION

Te =L LT, Li—Tu

Figure 3-13. Generator, tuner, and waveguide junction.

the conditions for maximum power transmission (and maximum efficiency) are

Fl = FB’ (3.75)
and
Ty = Tpi- (3.76)
Rewriting eqs. (3.75) and (3.76)
= oo o B12%21 " S1a%22)Tw * S
B~ "1 1 -3 ’ (3.77)
T S22Tm
and
o (5458, - 5145,0Ty * 5y
Ty = Ta: = IR . (3.78)
11°B
We can eliminate Tﬁ and obtain a quadratic equation with variable Ty
aF}i- BI'M+5= 0, (3.79)
where
2= Syp + 511051251 7 5118220
and

B =1 - IS990+ 55212 = 1515521 = S1155217-

The solution of eq. (3.79) is

|, 2laly?
Thy = — * 1 - { ) . 3.80
M Z2a B ( )
The expression for maximum efficiency is then
. 1S, 12(1 - |ryl2)
Ny = =L 21 u (3.74)

- 2 - 3 ~ - N s
02 11 - SppTyl® = 10515521 = S198,0Ty + Sqpl*
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Since the complex I} can be obtained from eq. (3.79), one can also separately find

-3y
the magnitude and phase of Ty as follows. If we multiply eq. (3.79) by e M, we

obtain

iy _ i
ae’ M|ryl? - Byl + 3 M= o0. (3.81)

Taking the real part, we obtain

Afryl® - BTyl + A = 0.
which is of the same form as eq. (3.72), and taking the imaginary part of eq. (3.81),

we obtain

Sy2 _sinyy * oy - dgg)

811812521 = 8115;,9) sin(¥yy + W)

(3.71)

Thus the two solutions for Iy are seen to be equivalent. However, the minimum
joss method yields the complex value of Ty from solution of eq. (3.79) while the
vanishing of the gradient method requires first a calculation of ¥y» then a calcula-

tion of |PM} by eqs. (3.71) and (3.73).

b. Minimum Transducer Loss
The following problem is of some interest in connection with maximum transmis-
sion of power. Suppose that the lossless tuners TU and TV are connected as shown
in figure 3-12 and adjusted to give maximum transmission of power. Under these
conditions, the transducer loss of the resulting waveguide junction (including
the tuners) is minimum. What is the value in terms of the characteristics of the
original waveguide junction?
It is apparent that the component of transducer loss associated with mismatch
as given by eq. (3.62) is zero. Thus the minimum transducer loss is given by eq. (3.63),
where n is the efficiency of the resulting waveguide junction. However, since tuners
TU and Tv are lossless, the efficiency is also that of the original waveguide junction.
Under the above condition of maximum transmission of power, this efficiency is a
maximum s and hence the minimum transducer loss is
[Lyly = 10 logyg . (5.82)
M
It has not been assumed in this instance that I; and T vanish, hence we cannot
conclude that resulting waveguide junction is non-reflecting, and in general, it will

not fulfill this condition.
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c. Intrinsic Attenuation
The minimum attenuation of a 2-port, obtained by adjusting tuners connected as
shown in figure 3-12, is by definition (Beatty, 1964c) the minimum transducer loss
under the conditions of non-reflecting generator and load (FG = FL =0). It is given
by eq. (3.82) and may be called the intrinsic attenuation for reasons similar to those
given above.
The resulting composite waveguide junction including the tuners is non-reflecting

(a bilateral Z, match), since the conjugate match condition exists at both input

0
and output terminal surfaces, and the generator and load are non-reflecting. Re-
writing eq. (3.82)
_ 1 3.83
A; = 10 logyq —, ( )
M
3.10. Phase Shift

a. Relative Phase
A quantity such as voltage, current, or voltage wave amplitude which varies

sinusoidally at a fixed frequency f may be represented by a complex quantity

u = Aed(@t+B) _ 4 36 (3.84)
The phase of u at any instant of time t is
6 = arg u = wt + B. (3.85)

vwhere w = 27f.

Since we cannot tell absolutely when t was equal to zero, B cannot bec absolutely
determined and thus phase is always relative. The phase 6 may be expressed in degrees,
radians, or cycles.

We choose the convention that the angle 6 is positive when measured counterclock-

wise in the complex ‘plane, and we choose u as above (not u = Ae-Je).

b. Shift of Phase by a 2-Port?®
We are interested in different kinds of relative phase or phase shit+t. For

example, we may observe the phase of the output voltage!® of a 2-port relative to the

°See Kerns and Beatty (1967), and Beatty (1964d). In this monograph, phase shift is
positive if it is a phase advance (lead) and negative if it is a phase delay (lag).

However, it should be noted that the term '"phase shift" is often used to denote the
absolute magnitude of a phase difference, and is then always positive.

1%0ther quantities, such as current or electric wave amplitude may also be of interest.
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nase of the output from a signal source, which is padded or isolated and phase locked
p

to an oscillator of stable frequency. If the 2-port changes, the relative phase of the

output voltage may be shifted to a different value. The phase shift is

AD =

&)

i

9,

(3.86)

where front superscripts i and f denote respectively the initial and final values of

the relative phase of the output voltage.

C.

Different Kinds of Phase Shift of 2-Ports

Three kinds of phase shift associated with 2-ports are illustrated in figure

3-14.
| l—i,
— — |
vy ] 2-PORT v
1 b b, I
1 2
(1) TRANSMISSION PHASE SHIFT op
i,
| 4 —"2
| : ,
- i LOAD
| 2-PORT " v,
- }
1 J 2
f.
| £ —"2
| |
i 2-PORT | *, LOAD
| i "2
1 7 2
(2) DIFFERENTIAL PHASE SHIFT A0
l |
INITIAL I
i v LOAD
2-PORT | 2
]
i 2
| ]
' FINAL |
| f, LOAD
[ 2-PORT 1 2
1 L
1 2
(3) -SUBSTITUTION PHASE SHIFT o

Figure 3-14. Three kinds of phase shift associated with a 2-port.
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They are:

(1) Transmission Phase Shift

b v i
eT, = arg(_.g.} 5 arg(-.—z—} H arg{-zv‘} . (3. 87)
% V1 !

This is similar to transmission loss.

(2) Differential Phase Shift
sz fv2 fi2
A = arg|—i = argj—| = argi—. (3.88)
i i i
bZ v,
This is similar to incremental attenuation.
(3) Substitution Phase Shift, Including Insertion Phase Shift

fb fV £

bg = arg T”Z'; arg T—g ; arg 7~2 . (3.89)
i, i, i
A 2 z
This is similar to substitution loss or to insertion loss.
Further discussion of this topic, including equations for various phase shifts

of 2-ports is presented later in section 7.2.

3.11. Cascading 2-Ports

In the analysis of measuring systems, it is often necessary to determine the
properties of a 2-port composed of a number of cascade-connected 2-ports. Consider
the following problem. Given the scattering coefficients of each of two individual
2-ports, determine the scattering coefficients of the composite 2-port which results
when these 2-ports are cascade-connected. This problem may be reduced to three steps:
(1) conversion of the scattering matrices of each unit to cascading matrices, (2)
multiplication in sequence of these cascading matrices, and (3) conversion of the
resulting cascading matrix to the scattering matrix of the composite waveguide junc-
tion.

To illustrate and provide the basis for these procedures, consider the cascade

connection of two 2-norts as shown in figure 3-15.

i
1 1
, i S
a,—-i‘ Ay ———4; 0
M 1 N ]
f-—b. B «——4—=B; bp—sy
]
l

! !
i i

Figure 3-15. Cascade connection of two 2-ports.
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The scattering matrices of M and N are

m m n n
o = [ 11 121 and n = [ 11 121. (3.90)
M1 M22 N1 M22
The corresponding cascading matrices relate the wave amplitudes as follows:
[bl C M Myg| [A2) " Az)
- - »
a;) My Myl By By
and
B 3 N N 4 ra a
[ 1l _ "1 12 2| _ NI zJ (5.91)
A Na1 Npal by b,
The joining equations are
AZ = Bl and A1 = BZ‘ (3.92)
Thus,
b a a
2 2
2 b, by

where R is the cascading matrix

between the scattering matrix S

and

For the example

In terms of the

(

of the composite waveguide junction. The relationship

and the cascading matrix is as follows:

(5,,5,,-S..5.,) S..)
r - L |P127217711%22) Pl (3.98)
Szt S22 1
(T (Tq1T9o"T1,To-))
s o 1 ff1z UriTezMaz¥an) | (3.95)
Taal “Ta1
above,
p o | M1 ™MiaNgy) (Mg NygtiyoNp,) (5.96)
(My N1 1*MpaNpq) My Ny 5 #M5N52)
scattering coefficients,
N . ) 1
Tyq = [Omgpmyy-mymy) (g, Ryq "Ry Ry, - Mygmy,] o
2121
= [ 1- - ] 1
Typ = [myp(I-mypnyq) - mypmyqngy
: 21021 (3.97)
Ta1 = mgp(Imypnyg) = MpgPiaipyd ~ — and
21721
Ty = (1-myyngq) :
Ma1021
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Using eq. (3.95), we obtain the scattering coefficient of the composite waveguide

junction in terms of those of the two cascaded units as follows:

m, ,m n
s oo s m2f21M11
11 1T
22™11
Y V)
Si2 = —————
1 - nyymy,
3 (3.98)
m,.n
Sy, = —2121 4
- myomg
n n m
S.. = p.. + 12721722
22 22 7 T -
ny11M22

3.12. Cascading Coefficients
The cascading coefficients are of special interest not only inkanalysis of cascaded
2-ports, but are also the coefficients of the equation for the transformation of

reflection coefficient by a 2-port. Rewriting eq. (3.10) we obtain

_T1fy t Ty
r, = —A— ==, (3.99)
T21TL * T2
Inspection of eq. (3.94) reveals that the following equation holds
11722 12721 T g (3.100)
21

Referring to eq. (3.18), it is seen that the reciprocity condition on the cascading

coefficients is

N

_ _ 701
T11%22 T Frafar T (3.101)
02
The lossless condition on these coefficients are as follows:
Irpal = Irgqls Irggl = drg,ls
Z.
01,
Iry9790 = Typtppl = — and (3.102)
202

912 * 0pq9 T Oy * by * 2w,

where n is an integer and ¢pq is the argument of rpq'
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In terms of the cascading coefficients, the efficiency n, can be written

™

1 - |t |2
nyg = 2L - L ~. (3.103)
Zog  rapTy * xpp1% - lrypTy + 1,

3.13. Transformation of Reflection Coefficients
A 2-port with arm 2 terminated in a load having a reflection coefficient FL
has an input (arm-1) reflection coefficient of
(512521 = 51152207y, * Syp _ 2T, *+ P
1-S

T

1% . (3.104)
ZZFL cFL + d

The reflection coefficient FL is said to be transformed to a reflection coefficient
Iy by the 2-port. An equation of the form of eq. (3.104) is called a linear frac-
tional transformation. Many properties of the linear fractional transformation from

the theory of complex variables!!

can be applied to the theory of waveguide junctionms.
A few of the simpler properties will be reviewed and applications to some types of

microwave measurements will become apparent.

a. Simpler Transformations

It is helpful in visualizing transformations of a complex quantity T, to another

L
complex quantity Fl to draw the two complex planes, and plot corresponding points.

Thus we might have the following transformations illustrated in figure 3-16.

T, -PLANE T, -PLANE
. s 512507
]12 21 145,
S92
UNIT
CIRCLE

Figufe 3-16. Transformation of three points from
T -plane to I'; -plane.

S.,S
1. ry = tatb. S11 - ~L22l  po- -1l
-c +d 1+ S22
= b . . =
2. ry = -- 8113 r, = 0.

'!There is a wealth of literature on this subject and only a few examples are listed
(Deschamps, 1953), (Storer, et al., 1953, and (Mathis, 1954).
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512521,
3
1-5

5. Ty = =St

;= +l. (3.105)
22

A well-known property of the linear fractional transformation is that circles
in the FL—plane transform to circles (different ones) in the Fl-plane. Since three
distinct points determine a circle, one can draw the Fl-circle corresponding to a
given PL-circle by transforming just three distinct points of the ry-circle. In
figure 3.16 the real axis in the Ty -plane (a circle of infinite radius) has been

transformed into a circle in the Tl-plane.

b. The Sliding Termination
A termination sliding inside a uniform, lossless waveguide will cause the
reflection coefficient T, at a fixed terminal surface in the waveguide to vary in

phase, but not in magnitude. Thus a circular locus of I'; is produced, with its

L
center on the origin.

The corresponding circular locus of Pl can be found by applying eq. (3.104),
but it is simpler to use the following form of eq. (3.10):

S..8
~ 12521
Iy - Sy = 1 X (3.106)
& " 52
[yl

The variation of r);L by sliding the termination changes only one term. Proceeding
one step at a time, we can determine the corresponding variation of rl as shown in
figure 3-17.

Vo

rfl':l- Iszal

i
i +lszl

Vit ¥y ~¥,
i

Figure 3-17. Steps in the transformation of a T -circle to a
{I'y —Syy)-circle.
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From figure 2—-17 it is evident that the radius of the (Fl - Sll)—circle, and

1"
the T;-circle of figure 3-18 is R1|512521[, or

also of
|S..,S,.T
R =R =1 1 + L 1S5, = —22 21 L (3.107)
1 1 7 12”21 - z
1 1 1-[s,,T.|
+ |S,,] — - |5, ] 22°L
|I‘ | 22 ” l 22
L L
The distance from the origin to the center of the (Fl - Sll)-circle is
S1,5,15,,T2]
oL "o 1 _ l 12°21°22 L' _
fcyl = 1S155,11 [’y - Tl R [S,,TL 1 (3.108)
—— + |S,,] 22'L
IF [ 22
L
The ]."vl—circle is shown in figure 3-18.
T, Locus
C‘|
Vit YoV

Cy

sII

Figure 3-18. The T; -circle corresponding to a
I'L -circle centered on the origin.

c. Significance of the Radius of the I‘l—Circle

Under certain conditions, the radius R1 of the Fl—circle equals the efficiency

[nZ]a - of the waveguide junction. These conditions are
1
1. |ryl = 1 (a sliding short circuit).
2. ZOlszl = 202512 (the reciprocity uOudbiLiUn).

When these conditions are satisfied,

7. 18,12

- 0z 71z’ .
Ry s T T [nz]al=0- (3.109)
01 22
The component of attenuation associated with dissipation [AZ]D is related to the
radius of the Pl—circle as follows:
[A,1p = 10 log)j— (3.110)
Ry

Note that the attenuation component [AZ]n corresponds to energy flowing into

arm 2 and out of arm 1, while the T -circle corresponds to energy flbwing in the

1
Opposite direction.
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A similar result is obtained if the sliding short-circuit is in arm 1, and R2
is the radius of the TI,-circle, as follows:

1
(Al = 10 10g10—E~- (3.111)
2

d. Displacement of Center from Origin
The center of the Fl-circle is displaced from the origin by the vector repre-
! : .
senting the complex quantity C; = S,  + C;, where |Ci| is given by eq. (3.108) and o
is directed at the angle wlZ + w21 - wZZ as shown in figure 3-18.
It is apparent that the Fl—circle will be concentric with the origin if the

waveguide junction is non-reflecting (Sll = 8,, = 0). We have then

(€15 =s,,m0 = O 20d [Rylg o5 g = 15155170l (3.112)
Also, for a non-reflecting waveguide junction, for which reciprocity holds, and
Irl = 1,
[Alg _g .o = 10 log), ——t—r. (3.11%)
11722 [Rlg _g =0
11 722

In this case it maukes> no difference which is the direction of energy fiuw ihrough
the waveguide junction.

The possibility of other conditions for which the Fl-circle might be concentric

1
with the origin exists. For example, if Cl and S11 are equal and opposite,

Ypp ¥ Vp2 = ¥y * ¥y 2 (20 - D,
and

s s

12821
1- s

s 227
15111 . (3.114)

22T 1°

e. Locus of r; for T; Real
If rL is ‘restricted to real values, the locus of rl is a circle. This condition
may be closely approximated in practice by varying the bias current of a barretter in

a microwave power mount,'? for example.

'2This téchnique is based upon a method originated by Kerns (1949b). See also, Beatty
and Reggia (1955).
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Referring to eq. (3.106) we again proceed step-by-step to obtain the circular

jocus of Ty as shown in figure 3-19.
1
T " S22
€ L. g
I-PLANE I T~ V22
I !
s T emy
. — e 22 ! ‘I"’zz |/ 155,] siny,,
=
1555l sin v,y
T, LOCUS
L-s

T
z+ ‘P'2+‘l’2.

[ h
]

M

K

\/( 1125210
[Sz2lsin ¥

Figure 3-19. Steps in the transformation of real T to a I, -circle.

It can be seen from inspection of figure 3-19 that

15125711
Ry = et
2[8,,| sin 120

and that the center of the TI'.-circle is located at

[ B ]

- J(n/2+P12+¢P21)
1= Sll + Rle .

f. Other Pl-Circles

It is possible to obtain a circular locus of Ty by means other than those

(3.115)

(3.116)

mentioned. For example, a non-reflecting generator and variable phase shifter could

be connected so as to vary the phase of a,, while a fixed non-reflecting generator

operating at the same frequency is connected to arm 1. In this case,

2

_~-UNIT CIRCLE UNIT CIRCLE <
T} Locus
T, L

(@) [} (c}

1

+

n
(3]

Figure 3-20. Possible I} -circles obtained by varying phase of a,.

Depending upon the ratio of lazl to Ia1|, we could have the loci for Iy

figure 3-20.
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Similarly,

b a
2 22 21 ‘ (3.118)

and corresponding circular loci may be obtained for Ty.

Such loci may be used in measurements of scattering coefficients of non-
reciprocal and active 2-ports (Altschuler, 1962).

3.14. The Linear Fractional Transformation

Instead of the transformation of reflection coefficients by a 2-port as in
cq. (3.104), wc are sometimc‘s concerned with the transformation of a complex quantity
w to the Z-plane in which the coefficients and the variables w and Z can be assigned
any appropriate values to correspond to a given physical problem. We consider

7 - a *Dhb (3.119)

cw + d
where Z is the dependent, and w the independent complex variable, and a = Aeja,
b = Bejs, c = Cer, and d = Deja.
Two cases are of special intereﬁt, one in which the magnitude of w remains

constant and its phase ¥,» varies, and the other the converse, i.e. the phase by

remains constant, and |w| varies.

a. Constant |w|, Variable Uy
It is helpful to write eq. (3.119) in the following form

z =2 . (ad - be)/cd (3.120)
c (c/d)w + 1

and to let e = Eel® = (ad - bc)/cd.
One can proceed step-by-step, as was done in a previous section, and arrive at

the diagram of figure 3-21 to represent the transformation.

2-PLANE W~ PLANE

—~——Z-L0Cus

Figure 3-21. Transformation of a w-circle centered on the
origin to a Z-circle.
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The arrows on the circles correspond to increasing ¥, the phase angle of w.

The radius R of the Z-circle 1is
| cdew |
[d]2 - |cw|?’
ad the position C1 of the center of the circle is at
a
2
c, = & - ___Bifj____ e
1 2 2 '
c |d]2 - |ew|

b. Constant ¥, Variable Jw |

It is helpful to write eq. (3.119) in the following form.

1

-jv

7 = & . [(ad - bc)/c?le W
. =i
C ]+ @ee ¥

and to let p = pelP - (ad - bc)/c?.

Step-by-step procedures will yield the diagram of figure 3-22 to represent

the transformation.

Z-PLANE W-PLANE
T
7
o¢ A \ ®
g - I -
{ 1_’/1 (p Y 2 =
e /// Yy
© ~ $
-0
a -
\'E -

Figure 3-22. Transformation of a w-line thru the
origin to a Z-circle.

The arrows on the circles correspond to increasing |w].
Z-circle 1is
Ipl
2|d/c| sin(s - v - ¥,)

Ry

and the position C, of the center of the circle is

1

jlp-v -m/2)
_a ., W
C1 = = Rlc
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c. Invariance of Cross-Ratio

The following property of the linear transformation has measurement applica-
tions and is therefore of interest.

What is called the "cross ratio'" or "anharmonic ratio" is invariant under
a linear fractional transformation.'® This is illustrated in figure 3-23 and

eq. (3.126).

z-PLANE w-PLANE
(23"24)
3 4
-~
N"’)
N:\' 5
~— /‘5 ’\lv
AN PN ,'\
R S f
(27 ~22)

Figure 3-23. Fout points in the w-plane transformed into fousr other
points in the z-plane.

. = = . ) (3.126)

An application of this property is given in section 3.15j5.

'%See for example, Townsend (1915).
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3.15. 3-Ports or Waveguide Junctions Having Three Arms

a. Introduction

There are many physical forms which may be represented by a waveguide junction
having three arms, with a single mode propagating in each arm.

In some cases, a physical form having only two arms may be represented by a
3-poTt. For example, if one of the arms consists of cylindrical waveguide of cir-
cular cross-section, two orthogonal modes may propagate in this arm, and it may
pe represented by two arms, each having a single mode.

In other cases, a physical form having more than three arms may be represented
by a 3-port. For example, a four-arm junction such as a directional coupler with
one arm terminated and not available for connection, may be represented by a 3-port.
gimilarly,. if the frequency of operation is below the dominant mode cutoff frequency
for all but three of the arms, then it may be represented by a 3-port (assuming that

each of the three remaining arms has single mode propagation).

b. Realizability Conditions
The general condition for strict realizability as given in section 2.3c(2)(a)
applies, that is the Hermitian matrices HZ’ HY’ or HS are positive definite. Con-
sidering only Hg = 261 - 8*2618, in which the power normalizing matrix has been

chosen as the unit matrix, we have

Hyp THyp THpg
s s s
Hg = (THyp THyp THasgls (3.127)
S S S
Hz; “Hgp Hig

where

R T

Sy T z 7 ’
11 01 02 Zo3

s - Subia | SaiSez 331332}

H - ’
12 Zo1 Zo2 Zo3

g 3

s . _{311513 , S, 531833}

H - ]
13 Zo1 Zo2 Zo3
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o o [B12fun, Sa2San 532531‘
H . td
2 Zo1 o2 Zos
2 2 2
s - lslzl N 1- lszzl _ ls3zf
H 2
22 Zo1 Zo2 Zo3
o o [F12%13 , Sa2%s §32333)
H = ’
23 2oy 202 Zo3
o o [5astu, Sasta §33331] :
H - 3
31 Zo1 Zo2 203
)
o o [F1s%12 | SasBar Sv33532}
H 3
32 Zo1 Zo2 203
and
5,502 15,507 1 - syl
2 3
Sy, = - B S 3 (3.128)
33 Zo1 202 Zo3

In order for Hg to be positive definite, all of the principal minors must be
positive, although it is only necessary to show that all of the leading principal
minors are positive. The latter condition is as follows:

S > 0,
Hyq

H H

11 22 12 721

and

det llg > 0. (3.129)

It then follows that

and

Sy S - S, S > 0. (3.130)
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These conditions state that the net power input to the waveguide junction must
pe positive for whatever excitation is chosen, or that for some excitation, some
energy 1is absorbed by the junction. For example, consider a source connected to

m 1 and non-reflecting loads to arms 2 and 3. The power input to the junction is

a
UL 1 - [8,,]?
11
in [ |81|2 s (3_131)
fo1 Zo1
and the power output is
b2 |bgl? 1S,712 184,12
Pout =~ ——— * —>— - la |2 | —2—+ 31| (3.132)
%02 Zo3 02 Zys
1f power is absorbed in the junction, then
Pin = Pout > 0
or
83117 15,112 18517
lag]? 11 Pl 1P .0,
or
1 - 'S [2 IS {2 IS lz
11 R 21 _ 31 50,
ZOl ZOZ 203
or
s > 0. . (3.133)
Hyq

Each of the other conditions corresponds to a different excitation and it can
be shown that any excitation can be synthesized as a combination of those implied
by the first condition stated, i.e. the leading principal minors of HS must be

positive.

c. Conditions for Losslessness
A large class of 3-ports have very little loss, and the properties of lossless
waveguide junctions apply to a good degree of approximation in most of these cases.
"These properties are concisely stated as in section 2.3c(2)(c) by saying that
all of the elements of IIS vanish. There are nine elements, but the off-diagonal
elements at the top are the conjugates of the opposite off-diagonal elements at the
bottom and give no additional information when set equal to zero. Hence, we have just

six lossless conditions as follows:

67



- 2 2 2
1 '511| _ 1521[ _ ISSI' = 0
’
Zo1 202 Zo3
SuS12 52182 S3iSs 0
3
Zgy Zo2 Zo3
18,12 1 - 15,12 [|S4,]?
12!” 220" BBl o
Zgy Zo2 293
CSufis Swfas SsaSss
2
21 202 Zo3
ISy51% ISy51% 1 - [S54l°
13" '723) 35 -9,
Zo1 202 Zos
S..S S,,S 5.,S
_ 712713 0 T22723 O T32733 _ 0. (3.134)
Zg1 Zo2 Zo3

These conditions state that the net power input to .a lossless waveguide
junction must be zero for any combination or excitations chosen, or that no energy
is absorbed within the junction.

As in the case of the 2-port, the conditions obtained directly from HS =0
are not necessarily in the most useful form, and other ones may be derived.

For example, consider the lossless condition Hg = Zél - 5*2618 =0 in a

slightly different form:

-1 -1
* =
$*20°8 = 7,7,
_ -1.-1, _ -1 adj S
s* =z ‘sz, =zt 24 2 7 | (3.135)
0 0 0. det S 0

Equating corresponding elements and taking the magnitude of each side of the

equations, we obtain for a typical element, say S..:

21
Syl = = g5 s s (5.136)
21 [det S| Z 12733 13732 .
01
It is possible to show that |det S| = 1 as follows. We make use of the fol-

lowing general rules which apply to determinants:
1. det (AB) = det A det B
2. det (transpose of A) = det A

3. det A* = det (transpose of K).
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The following steps then lead to the desired result.
det(zph) = det(5*) det(zgl) det(s),
1 = det(S*) det(S) = (det S)* (det S) = |det S|?,

Therefore
Jdet S| = 1. (3.137)

The equations obtained by equating corresponding elements of the above matrices

are
S ] = 18,,8<« - S, 5, | IS, .| = Eﬂl-ls Sax - S,.5.1
| 11t T 1922733 237321 12 7 21733 23-31!:
02
z 7
_Im 02 i
,Slﬁ' - 7 ,'qu'C'SZ h SZZSS].I’ ’321, 7 jleSSS SISSSZl‘
03 01
Loy
18551 = 1811835 = S138511> 1S53l 7 1118355 = S1253115
03
z 7
_ o3 ) _ %o3 i
el = 1812853 - S1382215 1S3, E“‘|311323 S135521 1>
01 02
and
1855l = 1513552 = S12551- (3.138)

They are useful in proving some of the theorems for lossless 3-ports to follow.

~d. Reciprocity
A straightforward application of eq. (2.55) yields the reciprocity conditions

for 3-ports which are

521%01 T S12%02°

S31%01 = S13%03»

S32202 = S23l03 (3.139)
- Carmma 4o manr 1

e L)] nuus bA]

There are many types of symmetry possible. For example, consider symmetrically
constructed H-plane and E-plane tees. If arm 3 is the branching arm and the terminal

surfaces in arms 1 and 2 are chosen symmetrically, the conditions on the scattering

1“‘Techniques for the analysis of symmetrical waveguide junctions are given in
Kerns (1951).
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coefficients are as follows: For the H-plane tee,

811 7 S220 S92 7 851
= = = 3.140
S13 = S31 = Sp3 = S3p- (3.140)
For the E-plane tee,
S11 % 5220 5127 8
- . 5 = - 3.1
Sz = S23 = 513 = “S5;- (3.141)

The symmetrical Y structures exhibit a higher order of symmetry, and non-reciprocal
devices such as circulators may possess symmetry. Each type of symmetry yields a set
vf cunstraints upon the scattering coefficients. It is possible to have electrical

symmetry without physical symmetry, but this is not usually encountered.

f. 3-Port, One Arm Terminated
A 3-port with one arm terminated in a load so that only two arms are available
for connection to sources and loads is essentially a 2-port. The parameters of the
2-port may be found in terms of the 3-port and the reflection coefficient of the

fixed termination.

If the load of reflection coefficient Tz terminates arm 3, then ag = TL3b3,
and the scattering equations for the 3-port are
by = Sppap * PSpp8p * PSysTizhss
by = 'Sp18p * Sp3; * 'Sy3TLsbss
by = Szpa; * Sgiay + ISyl gby, (3.142)

where the front superscript identifies the scattering coefficient as that of the

3-port. Solving to obtain the scattering equations of the 2-port, we obtain

3 3 3 3
|, ,SI3 SBIPLS , _813 832FL3
b, = S + o= T PP gl o+ S o P2 2 g
1 11 1 - 3. .1 1 12 1- 23S .71 2?
33°L3 33°L3
88,35, .T. 38,.%5,.T
b, = |38, + 23731 L3[ ., lag , 23 °32°L3| (5.143)
2 21 1 - 3S..7 1 22 1 ST 2
33°L3 33°L3

It is seen that if either the load ‘is non-reflecting (TLS = 0) or the thira

arm is decoupled (823 = 531 = 0) the scattering coefficients of the 2-port become

those of the 3-port or

2 _ 3 2 _ 3 2 - 3 2 - 3 .144)
S11 7 Sq1s "81p = 7Spps 7Sy = 7Sy, and ?S,, = %S, (5
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g. Non-Reciprocal 3-Ports

An interesting non-reciprocal 3-port is the circulator, which is shown in two

Figure 3-24. Schematic diagrams for lossless,
non-reciprocal 3-port circulators.

forms in figure 3-24.

The scattering matrix corresponding to the ideal forms of the two circulators

shown in figure 3-24 are

0 0 1 0 0
S=1{1 0 0/, S=1]0 0 1]. (3.145)
0 1 0 10 0

The ideal circulator is lossless (S*S = 1).

h. The Directional Coupler, 3-Port
Actually, directional couplers are often considered as a class of lossless 4-
ports, but if one arm is internally terminated so as to be not available for connec-
tion, ‘it is then a 3-port. As shown in figure 3-25 the side arm (arm 3) to which
detectors may be connected couples mainly to the incident wave in arm 1. The
coupling ratio is the ratio of the incident input power to the power coupled out
to a non-reflecting detector, when the main arm of the coupler is terminated by

a non-reflecting load.

3
outpuT t l
¢ >

Figure 3-25. Schematic diagram for a directional
coupler connected as a 3-port.

INPUT —
! 2

When az =a, = 0 (non-reflecting loads), the coupling is

ar|? Zy5 . Zos
C =10 log,n{—| — =10 log,H{——, (3.146)
10 7 10 1S, 122
3 01 31 01
or if the 3-port is a reciprocal one,
C=-10 1og101513531|. (3.147)



Another important property of the directional coupler is the ratio of the
emergent power coupled out for a given incident power input to arm 1, to the power
coupled out for the same incident power to arm 2, assuming non-reflecting loads on
all arms except those connected to sources. This ratio expressed in decibels is

called the directivity D. It may be written

£ 2 2
117b Z fa A
D = 10 logy, l,_él_ . 0L __El_g . 03 , (3.148)
lagl* Zgs | 0 by Zoz). _ -0
a,=a.= 3 al—as—

f b

where ~b, indicates coupling to the "forward" wave, and

3
the "backward" wave, the amplitudes a

b3 indicates coupling to

of the forward, and a, of the backward wave

1
being equal. It follows then that the directivity is
Z S 2
D = 10 1og10[—ﬂl . |3L ], (3.149)
2oz 153

or if the 3-port is a reciprocal one, the directivity can be written

S, .S
D = 10 log, 15 31) (3.150)
523532
In case that ZOl = Z02 = 203, reciprocity implies that 531 = 813, and 832 = SZS’
or
S31
D = 20 log, |21, (3.151)
532

It may be more convenient to measure the power transmitted through the main arm
than the incident power. The directivity might then be defined as the ratio of
emergent powers coupled out of the Side arm for the same powers transmitted through
the main arm, This would lead to an equation for directivity similar to eq. (3.149)

except that the ratio of ZUZ(IO ZOl would appear in place of the ratio.of Z to Z,,.

01 02
Note that the ideal circulator is similar to a directional coupler for which
the coupling ratio is unity and the directivity infinite. Thus the ideal circulator

couples all of the energy out of the main arm into the side arm.

Two representations for ideal 3-port directional couplers are shown in

figure 3-26.
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> >

1

Figure 3-26. Schematic diagrams for ideal 3-port directional couplers.

The scattering matrices corresponding to the 3-ports shown are

Q /EI?E?S C

s = {/1-¢8) 0 0], (3.152)
c 0 0
0 Y(1-¢*) o0

s = |/(1-c?) 0 cl. (3.153)
4] c Q

Observe that the scattering matrix of an ideal 3-port directional coupler is
not unitary. Although ideal in concept, it contains an internal termination and is

not lossless.

i. Solution of the Scattering Equations for b3

A number of measurement systems can be represented by a 3-port comnected in a

system as shown in figure 3-27.

DEITECIUR
93
S B
1
| J. B
GENERATOR 3-PORT . LOAD
0= (0
f«— b, [

2

Figure 3-27. A 3-port connected in a system representative of
many measurement systems.

In analyzing the system, one is often interested in solving for b3, the
amplitude of the wave incident upon the detector. This is conveniently done by
writing the scattering equations for the 3-port, applying the terminal plane
relationships imposed by the generator and load, and solving the resulting equations.

A solution containing determinants is conveniently obtained using Cramer's rule.
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The scattering equations are

b1 = Sy92y ¥ 558y * Sizag,
by = 52181 * Sp23; * Syzaz,

- 3.1
b, S 5,2, * Sz (3.154)

The terminal plane relationships to be applied are

) = bg *+ byTg,
and %2 7 bZFL’
- 3.155
a; = b.T, ( )

where Tgs Ty and T'p denote reflection coefficients of the generator, load, and
detector, respectively.

The equations to be solved are

"bg = -(1 - Syyrgdag + Sp,Teryby + SicTerpb.,
= 53187 7 (1= ST )by + Sy Tpby,
0= S53a; + SgTiby - (1= ST b, (3.156)

The solution for b3 is

T(1-813Tg)  SypTgTL b
521 “(1-8y,r) 0
°s ~ -(1-§ isi S, T iSZPL s ror (3-157)
117 12767 137¢D
521 T(1-89,T) STy
S31 S32Ty, " (1-S541p)

521 " (@-8,,T)

3 S T
by = -by 31 32’ L (3.158)
“(-84Tg) Sy,Tery $1376Tp
521 “(1-8,,T1)  8,sTy
S31 S50 “(1-8551p)
When one wishes to see the offoct on b3 of variations in Ty s the following form
is useful:
521 SZZ
ry + 38
s g LY S5
31 532
by = -bg (3.159)
"(1-811Tg) SppTg SysTel
(1-S9T6) 8137y
s s S..T ro -
21 22 23Tp L
S31 (1-S551p)
S S -(1-s,,1)
31 32 33T
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Note that the above equation has the form of eq. (3.104) the linear fractional trans-

formation of reflection coefficient. Therefore the results of sections 3.13 and 3.14

are applicable.

A further simplification of the above equation may be made as follows. Let

5,1 82
S.. S
K = __él;__iﬁi_’ (3.160)
S31
“(1-849Tg) SpTg SpsTglp
521 522 5,3Tp
s S -(1-8,,T)
r. - 31 52 33’ (3.161)
(1-S33Tx)  S1sTep
S31 (1-S45Tp)
and
s
C = b 31 ) (3.162)
(1-514T¢)  Sy3T¢Tp
S31 (1-S55Tp)
Then?!®
1
KT, + 1 1 + KT L.r
b, = -C L =C =cx XL (3.163)
Tpifp - 1 1 - Tyl 1 - Tyl

It can be seen by reference to eq. (3.151) that in case the 3-port represents a
directional coupler, the parameter K is approximately equal to its directivity ratio,
assuming that S22 is small and S21 =1,

The parameter T can be shown as follows to be the internal reflection coef-

21
ficient of the equivalent generator at terminal surface 2. One recalls an application
of Thevenin's theorem in which the internal impedance of a constant voltage source may
be determined by considering the inactive source and measuring the impedance "looking
back" into its output terminals. In a similar manner, the internal reflection

coefficient T is obtained by "looking back'" at terminal surface 2 with the

2i
generator inactive. We then have the following conditions on terminal surfaces

1, 2,-and 3:
a; = ber’
ag = ber,
b2 = a,T,.. . (3.164)

"SThis result appeared in a number of papers, for example: Beatty and Kerns (1958);
Beatty (1959); Engen and Beatty (1959); and Anson (1961).
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The equations to be solved are

0
b,

= -(1 - STy * Spp2y * Sy3Tpbss

$71TgP1 * S22 * Sy3Tpbse

Solving for a, we obtain

0 = Sy Tgby * S5pa, - (1 - SysTplbe. (3.165)
(1-84Tg)  S43Tp
ST (1-S..T)
= b, 31 6 33D . (3.166)
“(1-53Tg) S12 Sq3fp
Sy1T¢ 5,2 S23Tp
S31T¢ Sz ~(1-535Tp)

It can be seen that the Pzi of eqs. (3.161) and (3.166) is the same as the Tzi

of eq. (3.164), and hence in has the interpretation given above.

The short form of eq.

(3.163) is useful in reflectometer theory. It is

interesting to observe that the ratio of b3 to b4 for a 4-port connected as a

reflectometér can also be put into this form (Engen and Beatty, 1959).

j. Measurement of Reflection Coefficient r, with general 3-Port

The response b3 of a 3-port connected as in figure 3-27 is given by eq. (3.163),

and is a linear fractional transformation. We can use the property of invariance of

the cross-ratio in measuring the reflection coefficient T of an unknown load as

follows (Beatty, 1972b).

Connect in sequence 3 different loads having known reflection coefficients

Tl’ FZ’ and PS to port 2 of the 3-port, measuring the corresponding values of

b v

3= Vps

29 and V3 (measure both magnitude and phase). Then connect the unknown

load and measure Vu corresponding to Pu.

We can deduce [rom eq.

(3.%26) that

v, -V vV, - V r, - T r, - T
1 - "2, 3" ' _ 1 2,3 u (3.167)
v, - V3 Vo © V1 r, - Iy |
Solving for T,» We obtain
FS + rPl
Fu = s
1+
where
T, - V., -V vV, -V

T = . . . (3.163)



3.16. 4-Ports

a. The Directional Coupler
An ideal directional coupler is a lossless 4-port having a scattering matrix
which can be put into the form in eq. (3.169). To obtain this form, one uses a

nunmbering scheme as shown in figure 3-28 and chooses terminal surfaces appropriately:
0 v/ (1-¢?) 0 c
j/(1-¢?) 0 c 0
0 c 0 j/(1-c?)
c 0 i/ (1-c?) 0

It may be shown'® that any non-reflecting lossless reciprocal 4-port has a

s = (3.169)

scattering matrix that can be put in this form and is potentially a directional

coupler.

Figure 3-28. Schematic diagram of a 4-port
directional coupler.

Suppose that arm 4 is internally terminated so that a, = TTb4, and that only
the remaining three arms are available for conncction. The scattering cquations of

the resulting 3-port are then as follows:

1= ceral + 5/(1 - c? a, + je/(1 - cz)I‘Ta3

o
i

b, = j/(1 - c? a; + 0 + ca,
b, = jo/(1 - cz)TTa1 +ca, - (1 - cz)rTaz. (3.170)

The directivity of this coupler is

3523 2
3
S13

1

D =10 lo . S—
glo (1 - Cg)erIZ

= 10 logyq (3.171)

It is seen that the directivity is strongly influenced by the termination. The
directivity is infinite for a non-reflecting termination but decreases as the reflec-
tion from the termination is increased.

The coupling of this coupler is

- _ 1
Cc=-10 1og]0|823532| = 20 logy, & (3.172)

16$ee, for example, vol. 8 of MIT Rad. Lab. Series, Principles of Microwave Circuits,
edited by Montgomery, Dicke, and Purcell (McGraw-HilI, New York, N.Y., 1948)-
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It is seen that the coupling is unaffected by the termination, providing that we have
an ideal 4-port directional coupler to begin with, as was assumed above. Also, the

vanishing of QSZZ is unaffected. A non-zero Ty does affect 3811, 3533, and the

directivity, however.

b. The Magic Tee
A magic tee is usually envisioned as an E-H tee having appropriate internal
tuning elements, adjusted to provide a non-reflecting 4-port. Its external appearance

is as shown in figure 3-29. A magic tee can be regarded as a lossless reciprocal

Figure 3-29. External appearance of a magic tee.

4-port having a scattering matrix of a directional coupler with a coupling factor of

c = 1/vZ, or a coupling C of approximately 3 decibels. It is shown schematically

in figure 3-30.

2

Figure 3-30. Schematic diagram of an E-H tee.

The corrcsponding scattering matrix is as follows:

5= —
V2

= O« O
(=T = -
O e O =

0
1
0
j

This can bhe put into a different form hy chnosing different numbers for the
arms, and by moving the terminal surfaces in two of the arms. Moving the terminal

surfaces in arms 2 and 3 a quarter-wavelength outwards gives

0 1 0 1

111 0 -1 o0
S = = . 3.174)
210 -1 0 1 (
1 0 1 0
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Reversing the numbering of arms 2 and 3 gives

0 0 1 1
s=-2|0 0 -1 1} (3.175)
2 i1 -1 0 o
1 1 0 0

This is the usual form of the scattering matrix of a magic tee.

The magic tee can be used as a phase shifter and as an isolating power divider,
among its other uses. In its application as a phase shifter, sliding short-circuits
are placed in opposite arms, say arms 2 and 4 of figure 3-30. We then examine b3
relative to a; to observe phase shifting properties. The appropriate scattering

equation is

b3 = - ;%l(bzejez - b,e%h, (3.176)

where 62 and 04 relate to the positicns of the sliding short-circuils in arms 2 and 4.
But b2 = b4 = al//f, if arm 3 is terminated by a non-reflecting load so that a, = 0.

Therefore,

b . .
3o 1 (0302 | 30y (3.177)

ay 2
If the short circuits are initially positioned so that ejez - eje“ = 2, they can
then have their motions ganged so that this phase addition is preserved as they
are moved to change the phase of b3 relative to a; without changing the amplitude.
In order to accomplish this, both short-circuits must move in the same direction
with respéct to the center of the magic tee.

In its application as an isolating power divider to form 2 channels, the magic
tee has one arm, say arm 3 terminated by a non-reflecting load, and the source is
connected to arm 1. The power divides between arms 2 and 4 just as though two
identical generators were connected to arms 2 and 4. If Ty is the reflection coef-

ficient of the generator connected to arm 1, then the reflection coefficients of

the equivalent generators for arms 2 and 4 are also Ta.
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4, DPower

4.1. Introduction
Two research topics are described in this chapter. In section 4.2., the analysis
of mismatch errors (Beatty and MacPherson, 1953) in the calibration and use of micro-
wave power meters is presented.
In section 4.3, the measurement of barretter mount efficiency by an improved
version (Beatty and Reggia, 1955) of the impedance variation method (Kerns, 1949b) is

described, errors are analyzed, and experimental results are given.

4.2. Mismatch Errors

a. Introduction

In waveguide circuits, it is often required to determine the power delivered to
a matched, or non-reflecting load, by a signal source. Assuming that the power meter
correctly indicates the power absorbed, it often will not give the desired result
because of mismatch.?!

This point is illustrated by the following example, which is taken from p. 130 of
Griesheimer (1947), where the results were incorrect. A signal source delivers power
to a load according to
L-|rgl? .
| 2

_ Ipgl®

1 Z |1 - T.T (3.37)

01 G'1

If we assume that the signal source delivers 100 mW to a non-reflecting (Fl = 0)
Toad, and that this is the desired result, then

[bsl?
6 - 100 mw.

Z01

If a power meter having a VSWR of 1.4, or |T = 1/6, reads correctly the power

1!
absorbed, and the generator is non-reflecting (FG = 0), then

1
[P.1. _n = 100(1 - ——] = 97.2 mW,
1 FG"O 36

The power meter reads 2.8% lower than the desired value. Now if the signal

source also has a VSWR of 1.4 (but still delivers 100 mW to a matched load) the

lSee Sectiop 3.7b for a discussion of the meaning of "mismatch.” In this monograph
the term "mismatch" generally denotes a departure from the Z,-match, or non-
reflecting condition, 0
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or delivered to the power meter depends upon the phase of rely according to

p ow
eq (3.37) and lies between the limits
92.0 mW P < 102.9 mW,
mW < [ 1]|FGI=|F1|=1/6 S
Thus the power meter can indicate 2.9% above the desired value or 8% below
it.

Although this effect was known (Hand and Schrock, 1951), the analysis of the
error had not been published before 1953 and quoted error limits were often incorrect.
The error could be quite large when the generator mismatch was large, which was often
the case when generators were insufficiently padded or isolated. Subsequently, more
attention was paid to achieving a source match (Engen, 1958; Beatty and Fentress, 1971).
I1f the source is well matched, then a correction can be calculated if one knows the
VSWR of the power meter.

Application of the theory of section 3.7 and particularly of eq. (3.45)‘to
various circuit arrangements employed in the calibration and use of power meters is
given in the following discussion. The presentation is a slightly revised version of
Beatty and MacPherson (1953), which.first présented equations and results which

are still useful today.
b. Calibration of Power Meters

(1) General Discussion

A power meter is calibrated by comparing its indicated power with the power it
actually absorbs. Best accuracy of calibration is obtained by avoiding the use of
secondary standards, attenuators or directional couplers.and comparing the meter
directly with a reference standard which may Le a Lolometric or calorimetric device.
This may be done by alternate connecfion of the meter and the standard to a stable
source or by the use of certain power splitting devices enahling simultaneous com-
parison, or by a combination of methods. Power splitting devices having a power
ratio of unity have the advantage that geometric symmetry is possible, permitting
precise mechanical construction which leads to a corresponding excellence of
electrical symmetry.

The end result of a power meter calibration is often a correction factor f which

is used to convert the meter reading Ry to the power Py aborbed by the meter
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(PM = fRM). The correction factor f may be obtained in terms of observed quantities:

Py

Pg

P P
S S

= = (K) =2

. (x) (4.1)

M Ry

P
fo
Ry

where PS represents the power absorbed by the standard power measuring device. Alter-

natively, a calibration factor X, is defined (Larson, 1962) for bolometric power

b
mounts employing dc substitution. It is the ratio of the substituted dc power P in

the bolometer element to the microwave power P incident upon the bolometer mount.

Im
In the event that Pbm equals RM above, then f of eq. (4.1) equals the reciprocal of

the effective efficiency Ng» and

Lyl
K =0, - ITyl?) = 5 (4.2)
where PM is the reflection cocfficiont of the power meter. Calibration factors have

also been defined for bolometer units (bolometer mount with bolometer element
installed) in combination with directional couplers (Desch and Larson, 1963).

All of these calibration factors are related and can be determined from measured
power ratios. In the following, it is assumed that the ratio Pg to Ry can be deter-
mined and that we are concerned only with the deviation from unity of the factor K
of eq. (4.1). It is normally unity except as affected by mismatches and deviationms

from ideal properties of any power dividing devices that may be used.

Figure 4-1. Alternate connection to stable source.

(2) Method 1 -- Alternate (onnection to a Stable Power Source

The power meter and the standard are alternately connected to a stable generatr
as shown in figure 4-1. The generator output is padded to prevent the change in

loading from affecting its amplitude or frequency. The ratio of the powers absorbed

by the meter and the standard is?2

1 - 21 - |r,|2

. M (4.3)
1 - |rgl?

T'el's
1-7r

6™

2Thig is a direct application of the theory of comparison loss developed in
section 3.7a, eq. (3.45).
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where Tg» Ig» and Ty, are the voltage reflection coefficients respectively of the

generatoT, the standard, and the power meter, measured at the place of connection.?
1t is convenient to measure the voltage standing wave ratio (VSWR or p)

corresponding” to the magnitude of T'. Assuming that the worst phase combinations

can exist in eq. (4.3);

PmfPges * 1)° pmfeg * ps |?
S kg 2 B (4.4)
psleg * Py Pglegey * 1

In a specific example, if Pg = 4.0, og = 1.05, and oy = 1.25, Kl lies between
0.84 and 1.17, a mismatch error between -16 and +17 percent if K1 is erroneously
taken to be unity.

The range of error can be reduced by "matching back' toward the generator,

making TG vanislh, In this case, eq. (4.3) becomes:

(4.5)

With pg = 1.05 and Py = 1.25 as before, Ki = 0.99, and the mismatch error is
-1 percent.

Caution must be used in attempts to further reduce the mismatch error by
matching the power meter input, If an adjustable transformer is used for this
purpose, the loss in the transformer itself will cause an error which cannot be

readily evaluated. Only transformers with known loss can be safely used for this

purpose.

(3) Method 2 -- Comparison Using T-Junctions

(a) Simultaneous Comparison: The generator is connected to the center arm

(No. 3) of a symmetrical T-junction as shown in figure 4-2. The standard and the

power meter are connected to the other two arms (arms 1 and 2, respectively).

#1t is evident that K1 equals unity if Ty = Tgs 2 condition which may be recognized
by a method described by MacPherson and Kerns (1950).

It = (o - 1/ (p + 1.
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3
P P
S | 2 M
s M
s M

Figure 4-2. T-junction comparison.

It can be shown that equal power will be delivered to the standard and the
meter by a symmetrical T providing that their impedances are identical. A high
degree of symmetry can be achieved by precise mechanical design and construction
and by special techniques, such as electroforming. The degree of symmetry achieved
may in some cases exceed the accuracy with which it can be measured. In the general
case, however, in which asymmetry must be taken into account, the ratio of powers

absorbed by the meter and the standard is.®

l 513 :
2 1- (S, - =28 ]r } 2
. - ﬂl_ i S,s ) 11 23 128 ) 1 [Tyl 6
Z p S s 1- |Te]? :
S 13 1 - ls.. - 23 ¢ T S
22 S 12)°M
13
The coefficients of the form Sm o are the scattering coefficients of the T. These
b

scattering coefficients are cither voltage reflcction cocfficiecnts (m = n), or voltage

transmission coefficients (m # n), and can be measured® with a standing-wave machine.
It is possible to obtain the magnitudes of the coefficients in ea. (4.6) from
VSWR measurements and calculate the limits of K2 as the phases are permitted to vary.

Assuming that the T is symmetrical and lossless, K, lies between the limits:
1
— 4.7)

PMPs

v

uPs 2 K

Specifically; if pg = 1.05, and Py = 1.25, K2 lies between 0.76 and 1.31, anerror

between -24 and +31 percent.

5This_equation follows from the scattering equations (eq. (3.153)) of a three-arm
junction.

§See section 4.2e.
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(b) Alternate Connection to T-Junction: The generator is connected to the

center arm (No. 3) of a T-junction as shown in figure 4-3. An uncalibrated power
monitor is connected to one arm (No. 1) and the generator output is adjusted to
maintain a constent indication of the monitor. The mcter and the stendard arc

alternately connected to the other arm (No. 2).

v L7

MO S MO M

Figure 4-3. Alternate connection-to a T junction,

The ratio of powers absorbed by the meter and the standard from these conditioms,

applying eq. (4.6), is‘
2
1-|s., - S, |T
P 2 P [22 12] S 1 - fryl?
K, = M_ M MO 3 . M (4.8)
3 1 - |rgl?

e e
22 813 12§™M

)

w

o
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Comparison of this equation with eq. (4.6) shows that the effect of asymmetry of the
T has been reduced by this method. In the case of a symmetrical lossless T, the
limits of K, as determined from measurements of the magnitudes of the coefficients
are the same as the limits of Ky, as expressed in eq. (4.7),

1

fiv

PuPs 2 K3 . (4.9)

PMPs

(4) Method 3 -- Comparison Using Magic T

(a) Simultaneous Comparison: The standard and the power meter are connected to

the symmetrical arms (numbers 1 and 2, respectively) of a magic T’ as shown in figure

4-4,

A conventional waveguide magic T may be defined as a four-arm junction having the

form shown in figure 4~4 which is symmetrical, lossless, and matched looking in each
arm,
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Figure 4-4. Magic T comparison.

A generator and matched load are connected to the other arms (numbers 3 and 4,
respectively). It can be shown that equal power will be delivered to the standard
and the meter by a symmetrical magic T provided that their impedances are identical.
But in the general case in which the asymmetry and mismatch are taken into account

the ratio of powers absorbed by the meter and the standard is,®

- 2 - 2
Py ab - cdrp 1 [Tyl
L P IEETNE (4.10)
Pg g - dfr; Ty s
where:

a = Syg(1 - Sy4Tg) * 51,8157

b= 81501 - SyuTp) * 81,857y

o = 85,00 - 843T5) + 8,55,,Ts

d = 84523 - 513594

£=25,.5., - 5.8

12°34 13°24
g = Sp3(1 = SppTy) + 5158930y
The scattering coefficients of the magic T can be measured® with a standing-wave
machine or the ideal'® values can be used if the losses in the T are sufficiently

small, the internal matching is sufficiently good, and the mechanical construction

is sufficiently precise.

If the four-arm junction is an ideal magic T having properly chosen reference

planes, Sy1 = 8y = S35 =8y = 815 = S5y = 0, and S;, = -5, = S0 = 5,..

It is possible to simplify eq. (4.10) in several ways. For example, if it is

assumed that the load 1s perfectly matched (FL = 0), eq. (4.10) reduces to eq. (4.6).

®This equation follows from the scattering equations of a four-arm junction.

°See for example section 4.2e.

1%See eq. (3.172).
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If in addition some of the properties of an ideal magic T are substituted in this
equation (S;; = 8,5 = 8;, = 0, and |513| = lSzél), it reduces to eq. (4.5). A

nomogram representing eq. (4.5) is shown in figure 4-5.

2
p
K= m(%*1>' Py = 1.0

Ps \ Py, +1
1.0 — ' 2.0 —
-1 112
.2 ]
1.10 A
1.3 A N 1.9
1.08 -
1.4 4 1.06 4 .
[1 4 ] 1.8 -
:
; 1.5 1.04 - =
El » B
o« a.ja ﬁ
w - E 1.7 1
g o 1.02 8
o 1.6 E § o
% 1.00— «
w o <
s ;‘ . g 1.6
w o 4 <
o .7 - a 0.98 5
)
« . u
= * © 15
2 0.96 o
] ] =
QE 1.8 >
0.94 1 Q'? 1.4
1.9 A 0.92 - 1.3
1.2
0.90 A
2.0 — - 1.0 -

Figure 4-5. Mismatch effect in the calibration of power meters.

(b) Alternate Connection to Magic T: The generator and a load are connected to

the symmetrical arms (numbers 3 and 4, respectively) of a magic T as shown in

figure 4-6.
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Figure 4-6. Alternate connection to a magic T.

An uncalibrated power monitor is connected to arm No. 1 and the meter and stand-
ard are alternately connected to arm No. 2. The generator output is adjusted to
maintain a constant indication of the monitor. The ratio of powers absorbed by the

meter and the standard is:

: M, MO
Ps Py Pg
bg - dfTTgl? 1 - [Tyl 2
X. = . ]
5 (4.11)
bg - dfr; Ty 1 - Irgl?
where:
b= Sy - SyT) + 5,8,

g' = Sp5(1 - Sprg) + 81,8,.T¢
514823 = 813534
£= 51,854 = S15854
& = S15(1 - 55Ty + 5,8,.Ty.
If the load is matched (Tp = 0), eq. (4.11) reduces to eq. (4.8). It is evident that
the asymmetry effect is generally less in the alternate connection method than in the

simultaneous comparison method. If the magic T is very nearly ideal, substitution

of some of its properties (S12 = 822 = 0) into eq. (4.8) reduces it to eq. (4.5). For

a perfect magic T.

=

P I-0ryl?  pyflpe + 1)2
M M|Ps
—_— T —————— T - (4‘5)

Py 1 - |rg|? pgloy + 1
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d. Use of Power Meters

(1) General Remarks

If the power to be measured is within the range of the power meter, a direct
measurement can be made. If the power is greater, a calibrated device such as an
attenuator or directional coupler is used in such a way that a known fraction of

the power is measured by the power meter.

(2) Direct Measurement

In the direct measurement of the power that a given generator will deliver to
a given load, the power meter is simply substituted for the load. This is the same
situation encountered in the alternate connection of two power meters to a stable
source. If the meter and the load are nearly matched,!! it is often erroneously
assumed that the power mcasurcd by the metor is the same as that delivered to the
load. Assuming that the generator is well padded, the ratio of powers absorbed by
the load and the power meter is given by eq. (4.3) with an appropriate change in
subscripts
- Ty

1- FGPL

AN

wl®

(4.12)

1-|r

In this expression the reflection coefficients of the generator, meter, and load

are designated as Tor Ty and PL’ respectively. If the power meter reading is
assumed to be correct, it is multiplied by the factor K6 to abtain the power that the
generator will deliver to the load. It is apparent that eq. (4.12) and eq. (4.3) are

of the same form and that the 1limits of K6 are:

py [P * oy |2 oy [paoy + 1]72

L{Pg * Py M

__{_*__—.__] < Kg s _—L{u—__G . (4.13)
oylegey, * 1 Putrg * op

In a specific example, taking pg = 4,0, oy = 1.05, and Py = 1.25, KG lies between 0.84
and 1.17, a mismatch error of between -16 and +17 percent.
If the generator is matched, the mismatch ervor in the previous example is

approximately -1 percent.

!1The Zo-match, or the non-reflecting condition is the desired condition.
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(3) Use of Calibrated Attenuator

If a calibrated attenuator is used to extend the. range of power meter as shown
in figure 4-7, the measured power is normally multiplied by the attenuator ratio to

obtain the power available to the load. If the error of mismatch is taken into

P,
‘zG ! 2 Pu
I CALIBRATED
e~ Iing ATTENUATOR e Zy
Q——FG
Z; R
e ’I" L~ Z.

Figure 4-7. Use of calibrated attenuator.

account, the previous result is multiplied by a correction factor K7 to obtain the

power delivered to the load when it is connected directly to the generator. The

factor K, is given by!?
P. 1 - T.T 21 - |r;|?
K, = —=— = SL-s,ny| —L . (4.14)
7 pR 1 - T,T 22M50 2
MRa 6L M

In eq. (4.14) the reflection coefficients of the generator, load, and meter are
denoted by Tas Tps and Ty respectively. The scattering coefficients of the at-
tenuator are denoted by Sm,n and Pl represents the input voltage reflection coef-
ficient of the attenuator with its output.connected to the power meter. From the

scattering equations for a reciprocal two terminal-pair network,
S,,2T
r, =8, + 22 M (4.15)
1 11 1-5..T
22°M

and the attenuation in decibels is:

AT = 10 1og10 RA = 10 1og10 (4.18)

S12

'2This equation follows from eq. (4.12) and the scattering equations of a two-port.
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If only the VSWR's are measured corresponding to the reflection coefficients of
eq. (4.14), the limits of K7 are:

2
(QG + Ql)(pzz + pM)

v

K, >4 —
7 o

o (0apq * 1)(pj,0y + 1) z °L
2 2L G1 22°M (4.17)

pM (DG * pL)(pzz + 1)(91 + 1) pGpL + 1)(922 + 1)(01 + 1)
In a specific example, taking Pg = 2.0, oy = 1.20, Py, = 1.1, Prg = 1.20 and py = 1.25,

K, lies between 0.89 and 1.14, a mismatch error between -11 and +14 percent.

7
If desired, the error may be evaluated by measuring the reflection coefficients

appearing in eq. (4.14). The measured value of r, may be checked by measuring the

scattering coefficients of the attenuator and substituting in eq. (4.15). Inspection

of eqs. (4.15) and (4.16) shows that T 1 if the attenuation

1 approximately equals Sl
is large. ‘
If the attenuator is reflection-free (811 = S22 = 0), eq. (4.14) reduces to:

. 1 - r.ro]21 - |rp|?

K, = c1 L (4.18)
1-TgT) 1 - Iyl
and eq. (4.15) reduces to:
1
- 2

Iy = S127 T (4.19)

In a specific example, taking og = 2.0, oM = 1.20, oy = 1.1, and Py = 1.019 (10 dB
1

7 lies between 0.970 and 1.046, a mismatch error between -3 and +5 per-

attenuator), K
cent,

If the generator is matched (FG = 0), eq. (4.18) reduces to:

W 1. Tl o s 12
< - L' _ L\ _ (4.20)
1= ryl®  eyleg, + 1

Assuming that pp = 1.1 and Py = 1.20, K; equals 1.007, representing a mismatch error

of less than 1 percent.

(4) Use of Directional Couplers

(a) Temporarily Inserted: A directional coupler is often used to extend the

range of power meters as shown in figures 4-8 and 4-9. In figure 4-8, the coupler is
temporarily inserted between the generator and load and the power is measured with

a power meter. The measured power is normally multiplied by the coupler ratio to
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Figure 4-8. Temporary insertion of directional coupler.

obtain the power available to the load. If the effect of mismatch is taken into

account, the previous result is multiplied by a correction factor K, to obtain the

8
poweT delivered to the load when it is connected directly to the generator. The
factor Ky is given by:!?

- - 2 - 2
P L S12(1 = Szaly) *+ 87355,3Tyl* 1 - [T]

- - 2’
Sp3(Ty = 5993 * 84,544 1 - |1yl

2
F'Grl

1 - Ty

L

PuReo

N I L (4.21)

In eq. (4.21) the reflection coefficients of the generator, meter, and load are
denoted by TG’ FM, and FL, respectively. The input reflection coefficient of the
directional coupler connected as shown in figure 4-8 is Pl. The scattering coef-

ficients of the coupler are designated by S, The coupling, C, and directivity D,

,n’
are defined in the usual manner:

- - 12
€ =10 logyy Ry = 10 loglolg——
13
s | (4.22)
D = 10 log,,|—=>
$23

It can be shown by a solution of the scattering equations for a three-arm junction

that the reflection coefficient Pl is:
2
_ St Ty
I =85
0 s Sp5(l = STy ) + §1,5,.T, ]
- - r
22°L S, - 8,.Ty) + S..S5,.T 23 M
12 33Ty 1352308
S, .2%r
M
+ L3 . (4.23)
5121 - SgTy) + S125,5Ty
(1 - S,.T,) - S,.T
33M° g @ -sS,.r.) +5S,.8s..r. 23L
13 22°L 12723 L

1 X X N . . R R
3The.derlvatlon of this equation is straightforward, starting from the scattering
fquations of a three-arm junction. See eq. (3.153).
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1f the directional coupler can be considered to be perfect, having infinite direc-
tivity (SZ3 = 0) and being reflection-free (Sl1 = 522 = S33 = 0), the above equations

simplify, eq. (4.23) reducing to:

Ty =511 % 512

Ty, + Sp3°Ty (4.24)
and eq. (4.21) reducing to eq. (4.18). If in addition the generator is matched

(TG = 0), eq. (4.20) applies.

215 ! 2 FL
*T__ G- joc i Ua
I
G 3 la
Y
Fk
zlﬂ

Figure 4-9. Permanent installation of directional coupler.

(b) Permanently Installed: A directional coupler is often permanently

installed between the generator and the load as shown in figure 4-9. The power
delivered to the load is normally obtained by multiplying the power meter reading
by the coupler ratio. If mismatch is present, it is necessary to multiply this

result by a correction factor K,. This factor is given by:!'*

- - 2
o= L s |z‘slz(1 S3gTy) * SygSpsTy| 1 - [T ] (0.25)
9 1713 B - 2" .
PuReo S§13(1 = SyTp) * Syp8p3Tpl 1 - Iyl
Note that Ky = 1 when ]PL] = [FMI = 0, and (512| = 1. If the directional coupler
can be considered to be perfect (Sl1 = 522 = 833 = S23 = 0) and the coupling is

loose (S12 = 1), eq. (4.25) reduces to eq. (4.20)

In a specific example let pp = 1.5 and oy = 1.25. A directional coupler is
used having a directivity of 25 decibels, a coupling of 20 decibels and reflections
in each arm producing a VSWR less than 1.1. Assuming the worst phase conditions,
the limits of error calculated from eq. (4.25) are approximately -8 and +2 percent.

If the directional coupler is assumed to be perfect in the samc cxample, the

error calculated from eq. (4.20) is approximately -3 percent.

!*The derivation is similar to that for eoq. (4.21).

94



1f these examples can be considered typical, it is evident that the simplified

quation cannot be used to evaluate the mismatch ervor unless the directional coupler
e

is very nearly perfect and the degree of mismatch is small.

e. Measurement of Scattering Coefficients
A reciprocal network having n-terminal pairs and a scattering matrix S is shown

in figure 4-10. The scattering coefficients are of the general form Sp q where p and
k]

Sy SetTT Sin
Aj— S= 5‘12 Sor---- S an
) : !
By+— \ ) !
g 4 5!
q L i Sen----Spn

Figure 4-10. Network having n-terminal pairs.

q are integers, each denoting a given terminal pair. It is assumed that reciprocity

holds in the form Spq = qu.

If p = q = K, the voltage reflection coefficient SKK is measured at the Kth

terminal pair with all other terminal pairs connected to reflection-free loads.

\

Figure 4-11. Reflection coefficient circle.

If p # q, the voltage transmission coefficient Spq is measured in the following
way. The qth terminal pair is connected to a variable feactance. All other terminal

Pairs with the exception of the pth pair are connected to reflection-free loads.
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The input reflection coefficient Fp is measured for various reactances at q. The
locus of the measured points is a circle as shown in figure 4-11. Assuming that

reciprocity holds in the form S S the magnitude and phase of SP are:

pq - “qp’ q
2 - R - S 2
Iqul 1 | qql }

_ 1
Yoq = H6 * Toq)- (4.26)

q
A short derivation follows:

If A and B denote the incident and reflected voltage waves at a pair of ter-
minals p and q,
p = Sppfp T ®pa’q
| + 5 A (4.27)

=S A .
Bq qp p qq9 q
Let
A .
Ja . e,
B
q
Then
A S
Xﬂn: "tjggg——~—— (4.28)
- S
p °© aq
and:
B A SZ
T = _E. = q = pq
T S + S — =g 0t .
I T I T ) S LR (4.29)
P p qq

A variation of 6 represents a change in the reactance connected to terminal pair q.
As shown in figure 4-12, the magnitude of the vector quantity (Pp - Spp) goes through

maximum and minimum values as 6 changes.
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Figure 4-12, Translated reflection coefficient circle.

At these points M and m,

s_ |2 2y, -v, ) '
T - S )y = -laE&l—__ e’ "Ypa Yaq (4.30)
( M
P PP 1-[s_|
aq
S 2 j(2 - +
(r. - s = -J—Rﬂl~—— eJ( "pa Yaq ﬂ). (4.31)
P pp m 1 + 'Sqql

The radius of the circle is:

S |2 S 2 S
R = % | pql + | pql = | Pg
1

. (4.32)
- |8 1 S - IS 2
1= [8g * 18qq] 844
The distancc to the center of the circle is: )
s |2 [s. 12 ) Is. |2
= 1 ! Pq R rq - Pq =
e © 7[1 “ ISgql 1+ IS 1) 1 - [s_|? ISqql = RlSgql- (4.33)
q9 qq qq” .

Denoting the phase angle (Zqu-qu) by ¢, the diagram of figure 4-12 can be drawn.
An alternate method of measuring the scattering coefficients of an n-terminal
pair network is as follows. Referring to figure 4-10, the scattering coefficients

Spp’ Spq’ and Sqq are determined by terminating terminal pair q'in three different
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joads having voltage reflection coefficients FLI’ PLz’ and FL;’ and measuring the
corresponding input voltage reflection coefficients Ty, Fz, and FS at terminal pair
p with all other terminal pairs terminated in matched loads.
Solving the three equations for input voltage reflection coefficient of the
form
SZ

P =S __29,_1»_ (4.34)
PPl -8
aa’L

the following expressions are obtained for the scattering coefficients.

- - + T r,(r
B WL WO LS WS s W00 P R S A ) 2(T3 - T) (4.35)
kP Ty Tp, (P = T) # Ty, Iy (T = Tg) + Ty Ty Ty - Ty)
s . PLl(TZ - Ys) + FLZ(TS - Yl) + rLa(Pl - Tz) (4.36)
a9 - - -
Iy, Ty, (T = Tp) * T T Ty - Tg) *+ T Ty (Fg - Ty)
SRR 5 S LA S LS Tl RS il P ), - T )y, - Ty ) .37
Paq - - _ 2
Ty, Ty, (P = Tg) * Ty, Ty (Fp = T + T Ty, Ty - Ty]
Extension to the non-reciprocal case is straightforward. One replaces S;q by Spqsqp’
and Zqu is replaced by qu + qu.

4.3. Barretter Mount Efficiency Measurement

a. Introduction

As mentioned in the introduction to Chapter 4, the impedance variation method
of measuring barretter mount efficiency was developed by Kerns (1949b). At first,
accuracy was poor (10-20%) because impedances could not be accurately measured
in coaxial and rectangular waveguide.

In the following section, a method is described which is based upon Kerns'
work, but avoids the measurement of impedance. The accuracy is estimated to be
better than + 1.6% (see table 4-2). The work described here was performed in 1953-54
and was followed with further refinements,'S The work on microwave power measurements

is well covered in a survey article {Rumfelt and Elwell, 1967).

!%Tuned reflectometer techniques (Engen, 1961) were applied to measure efficiencies
of barretter mounts in rectangular waveguide with improved accuracy (0.5%). These
techniques were used at frequencies where the more accurate (0.2%) microcalorimeter
methods had not yet been applied. Finally a method was developed (Engen, 1966) to
accurately (1.4%) transfer the calibration of a bolometer mount in rectangular
waveguide to one having a coaxial output.
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Although the method described below is presently not in use at NBS, it
jliustrates the application of microwave circuit theory to the development of accurate
measurement techniques. The description of the method begins with a discussion of
the definition of bolometer mount efficiency.

The efficiency, n, of a bolometer mount is defined as the ratio of the power
dissipated in the bolometer element to the power input to the bolometer mount. If
the power dissipated in the bolometer element, Pb, can be accurately determined, the
power input, PI, to thc bolomcter mount is

Pb;

p. = 2
n

I (4.38)

Pb is usually measured by substitution techniques in which it is customary to reduce
the audio or dc bolometer bias power (after the rf power is applied) until the
bolometer resistance returns to its original operating value. It is assumed that
the change in bolometer resistance caused by the rf power is identical to the change
in resistance caused by an equal amount of af or dc power Pd' The validity of this
assumption has been treated (Carlin and Sucher, 1952), (Adams and Desch, 1968), (Jarvis
and Adams, 1968), (Adams and Jarvis, 1909), for Wollaston wire bulometers couled by
convection. Based upon this analysis, Carlin and Sucher concluded @hat '"Wollaston wire
bolometers, when properly designed and mounted, afford a means of measuring cw power
over a frequency range extending to the millimeter wavelength region, with an accuracy
approaching that of low-frequency measurements.'” It should be noted, however, that under
less favorable conditions the substitution error for convection-cooled Wollaston wire
bolometers may be appreciable (let us say greater than 0.5 percent) at frequencies above
the estimated 1limit of 3,000 MHz, depending upon the length and mounting of the
bolometer element.
If the ratio of Pb to Pd is Ko
P, = Ei P (4.39)
I n a :
It is possible to estimate the limits of K, for a specific Wollaston wire bolometer
from the calculated curves of Carlin and Sucher (1952).
An"impedance method of determining bolometer mount efficiency has been described
by Kerns (1949b). Unfortunately, relatively small errors in the required impedance
measurements can lead to a large error (10-20%) in the efficiency as determined by

this method.
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A modification of Kerns' method will be described, in which the direct measure-
ment of impedance is avoided, permitting the efficiencies of tunable bolometer mounts
to be obtained with increased accnracy (1.6%). Efficiencies of untuned bolometer
mounts can thereby be obtained with very little loss in accuracy from voltage ratio

measurements.

b. .Impedance Method

In the impedance method of determining efficiency the bolometer mount is thought
of as replaced by an equivalent two-terminal-pair network terminated in the bolometer
resistance. As shown in figure 4-13, the input impedance (of the equivalent network)
corresponding to each of three different bolometer resistances is obtained.

The normal operating resistance of the bolometer is designated as RZ‘ The
efficiency for this condition may be calculated from the following expression deduced
from Kerns (1949), involving the three terminating resistances Wi, Wy, and LB and

the three corresponding input impedances Zl’ ZZ’ and 23,

TRy (2, - Z,)(Z, - Z,)(w, - W)
Efficiency (n) 2|2 173 25 4 (4.40)
w2=R2 ReZ2 (23 - le(w2 - wl)(w3 - wz)
4 S.. S s2.r
1T__ 1711 "2z . =5 12°L1
S, Lot $h L
Iy o—_12 "S220 11
2
z, S11 Sop - . . ST
—| s Y = T T
Iy 12 2 2 75 T=5,,7, 2
VA 5 S 2
I T 2 R P L
ry o—{ 12 : 3T TS50
e g2 [ 2l
i 15121 =172 17g

n

R=R
2 ~ 2_ _ 2 2
11-8 550 217 - 1877 (15557 ) 457,57 51

Figure 4-13. Efficiency of a two-terminal-pair network (terminated in a
resistance Ry ) determined from three measurements of
input impedance or reflection coefficient,
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An equivalent expression for the efficiency can be obtained!® in terms of the

yoltage reflection coefficients corresponding to the above terminating resistances and

input impedances.
- - - - 2
(Ty - TP (Tg - T (Tyg - Tpg) | 1 - (Tp,l
’
1-qr,l®

Efficiency (n) =

I (4.41)
R=R, (T3 - TP (T - Ty (Tyz - Typ)

where I' denotes an input, and FL a terminating reflection coefficient.
If the bolometer forms one arm of a Wheatstone bridge, it is convenient to adjust

the bolometer resistances Rl’ R2’ and R3 to predetermined values. If the factor

containing the real parameters rLl’ PLZ’ and FLS is denoted by C, eq. (4.41) becomes

r, - r))(r, -r,)
. c (T, -5 - T,
BTN — , (4.42)
2 3 1
where
) 2y 'z ~ T | 2Ry (Rg - Ry)
C= {1 - |T,l%) |- :
Ty = T (Pps - Ty (R; - RD(Ry - R
and
r.o= Ry = 7y
LR vz’
L 0
Where ZO is an arbitrary real impedance.

It is generally true that the factor C can be more accurately determined than the
other factors in eq. (4.42), because C is a function of resistances determined by dc
measurement .

The reflection coefficients T and T, occur in difference terms of eq.

1° T2» 3
(4.42), with the unfortunate result that a given error in measuring individual

reflection coefficients may produce a much larger error in the calculated efficiency.

j617/60

For example, if C = 19.92, I, = 0.0676, FZ =0, and T, = 0.174 e the

1 3
efficiency is approximately 97 percent. An error of only * 1 percent in measuring

the voltage standing-wave ratios

1+ |7
[VSWR = h———T—TJ corresponding to |T;| and |T,|
1 -4r

can produce an error of approximately * 6 percent in the calculated efficiency.

fﬁEquaLiuu (4.41) cau be obtained by simultaneous solution of the equations appearing
in figure 4-13, which are based upon the scattering equations of a two-terminal-pair
network. See section 3.le, eq. (3.4).
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In order to reduce this error in efficiency to the more useful value of = 1 per-
cent, it would be necessary in the example to make VSWR measurements to an accuracy
better than approximately * 0.2 percent. It is apparent that the determination of
efficiency by this method places rather severe requirements on the accuracy of UHF

or microwave impedance measurements.

c. Improved Method
It is possible to avoid the direct measurement of impedance of tunable bolometer
mounts having a high efficiency (above approximately YU%) and thereby increase the
accuracy of the efficiency determination.
Assuming that the bolomcter mount can be made reflection-free (PZ = 0) by an
appropriate tuning adjustment when the bolometer is operating at its normal rated

resistance, RZ’ eq. (4.42) becomes

(4.43)

If, in addition, the bolometer mount has a high efficiency, it can be assumed with
small error (as discussed later) that the vectors representing Tl and r. terminate on
a straight line passing through the origin. The efficiency is

[rs

R

. (4.44)
3

The plus sign is used if the vectors representing Fl and F3 terminate on opposite

sides of the origin, and the negative sign is used if they terminate on the same side.

Bolometer resistances R, and R, should be chosen above and below R, in order to

1 3 2
obtain the greatest possible spread. In this case the vectors representing T, and T
terminate on opposite sides of the origin, and
ITyTsl (py - 1 (pg - 1)
1°3 - C 1 3 , (4.45)
IF3I + Irll 2 P10z 1

where p represents the VSWK corresponding to |[I].
Instead of measuring Py and Py, MOTE accurate results may be obtained by meas-
uring the relative voltage output of a loosely coupled, properly positioned fixed

probe.
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A simplified representation of a slotted section and probe is shown in figure

1t is seen that the voltage, E (in waveguide of rectangular cross section

4-14. P?
operating in the dominant mode, EP corresponding to the strength of the transverse

electric field) is a function of the reflection coefficients of the generator, probe,

and load referred to the probe position. From inspection of the equivalent circuit

1 - FGJ(l + FP)(l + FL)
G (1 + T @ - Tp) @ + 1) + 201 + T - T

Ep = E » (4.46)

¢'e)

in which the subscripts G, P, and L, refer to the generator, probe, and load,

respectively.

By means of a matching transformer following the generator, it is possible to

make FG vanish. In this case,

_ 1
Bp = Bg ——— (4.47)
Yt T T,
where yp = (r - FP)(l + FP).
' TUNABLE
GENERATOR gtg}}gﬁ BOLOMETER
: MOUNT

PR?BE

ZG% Fp Ep %ZL

Figure 4-14. Simplified block diagram of measuring apparatus
and an cquivalent circuit rcprcocntation.

If in addition, the probe is loosely coupled (yP = 0),

E =

P a-+r1. ‘ (4.48)

N
B

If the probe is located at a position where its response is maximum when the
bolometer resistance is Ry, Ep; is proportional to (1 + |F1|). With the probe fixed
in that position, the bolometer resistance is changed to R2 and then RS’ observing

the probe response,

Ep, = k(1 + |rl|)
EPZ =k
Eps = k(1 - [T4]). (4.49)
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Defining the ratios Kl and K3 as follows,

E
P1
K, = — =1+ |1
P2
E
_Bps
Kg= o=t Ir5ls (4.50)
P2
the efficiency may be written
L (Bpy - Epp) (Bpy - Bpg) (K - DA - Xq)
n=c =c : (4.51)
Epy(Epy - Ep3) ISR

A correction to eq.

(4.51), to compensate for failure of the assumption that

the vectors representing Ty and T, are colinear, can be made if the other sources

of error are neglected for the moment.
that given by eq. (4.51) be

(Kl - Ks)

Let the ratio of n given by eq.

r, -r

1 sl (K - D@ - K

3)

If the angular difference between rl

—

(4.43) to

. (4.52)

and r3, as shown in figure 4-15, is

r,

=}~

Figure 4-15.

.
~
~
AN
N\ Locus

Diagram illustrating curvature of input reflection

coefficient locus for resistive termination of

bolometer mount,

w + §, where § z 0.1, it can be shown that

Irgl = (1 - K@ + 82/2Ky),
K (1 - Kp)?
[Ty -yl = (K - K1 + 62 1 ¢ 3) -
2K5(K) - Kq)
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and

2
g =1+ 62 e G B 53). (4.53)
2K (K; - K)

The angular difference, &, is simply related to the curvature, K, of the locus
of the reflection coefficient. This locus may be determined by measuring the input
reflection coefficient (referred to the fixed position of the probe) as the

polometer resistance is varied. The expression relating K and § is

- K (§ < 0.1). (4.54)

1 3)

Equation (4.53) may be written in terms of K:

(K, - 1)(K, - K
£y =1+ K? 1 L . (4.55)

81(3

A graph representing the percentage correction according to eq. (4.55) is shown
in figure 4-16.

Another correction to eq. (4.51) is based upon the fact that there mayb be
appreciable losses between the fixed probe position and the bolometer mount input.
The efficiency of a length of line or waveguide having a known attenuation is shown

in figure 4-17. 1If the line or guide section is not uniform, the efficiency must be

K=1.333 K=1.000 . K=0.667
UNIT
CIRCLE
1.3 1.3 1.3~
F : 0.59%

1.0%
K Y Ky 0.5 Ky
1% 1.1 - 1k 0.1
. 1 T ! 1.0 I 1 1.0 - |
.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0

K

3

Figure 4-16. Percentage correction to efficiency corresponding to curvature of reflection
coefficient locus for three values of curvature.
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determined by other means, such as measuring the bolometer mount efficiency with
aﬁother identical slotted section inserted between the bolometer mount and the meas-
uring slotted section. If the efficiency of that portion of the circuit between the
fixed probe position and the bolometer mount input is Np_p» the efficiency of the

bolometer mount, applying the above corrections is

LT L ] I R R [ )

(4.56)

Np.p K, - K3 8K,

It is seen that both corrections increase the efficiency over the value obtained in

eq. (4.51).
.900 "
y4
.950
4
= //
” 1
S A
o .990 -
S Z
w995
. /
2 ATTENUATION =
—10 L0G;; ! DECIBELS
| n
999 ik
.01 05 .01 0.5 1.0

ATTENUATION, DECIBELS

Figure 4-17. Efficiency of a symmetrical, matched attenuator
(or a length of uniform line) terminated in a
reflection-free load.

The method just described is applicable to tunable bolometer mounts (adjusted
for no reflection when R = RZ)’ in which the bolometer element can be represented by
a resistance terminating the bolometer mount. (Barretters are generally suitable,
but there is evidence that thermistors do not fulfill this condition).

The efficiency of tunable bolometer-mount assemblies, including matching trans-
formers, can also be measured by this method. - After the efficiency of a tunable
bolometer-mount assembly has been determined, at a specified operating frequency,
the efficiency of another tunable or untuned bolometer mount or assembly can be
obtained by comparing the power readings of the two mounts when alternately con-

nected to a stable, well-padded generator. Assuming that the power dissipated in
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the element can be accurately measured by dc substitution techniques (See Chapter 3
of Ginzton, 1957), and letting the subscripts A and B refer to the two mounts,

“APA =P
P, =P

Ad

TlB B Bd® (4.57)
where n is the efficiency, P is the input power, and Pd is the power dissipated in
the bolometer element.

1f Ty is the input reflection coefficient of the bolometer mount whose efficiency
is to be determined, and we assume that rA = 0, the ratio of powers aburbed by the two

bolometer mounts or assemblies, (assuming a matched generator) is

Pa . 1 _ (g + 1)°
- = i . (4.58)
Pp 1 - |Tg] 4oy
The efficiency of the second bolometer mount is
_ Pa Ppa _ log * 1)% Ppy
Np = == —— N, = ————— —— N,, (4.59)
B op p A 4 p,, A
B “Ad Pp Ad

where pp is the VSWR corresponding to |[Tp].

An error in measuring op will cause an error in determining ng but fortunately
the error is small in most practical cases. For example, if o is determined to
be 1.20 with an accuracy of # 2 percent, the corresponding error in ng is approxi-

mately * 0.2 percent.

d. Discussion of Errors

An accurate knowledge of the efficiency of bolometer mounts used for microwave
pbwer measurement 1s essential to accurate power measurement. For this reason, it
is felt that a detailed discussion of the error in measuring efficiency is desirable.

Certain sources of error appear to he common to most measurements at high fre-
quency. Among these are instability of oscillators and amplifiers, unwanted fre-
quency modulation (FM), spurious amplitude modulation (AM) and harmonics in the
generator output, pulling of the oscillator by changes in loading, erratic or unknown
detector characteristics, errors in measuring the detector output, impedance mis-
matches at junctions, and mechanical instability of the components. Error from
these sources is minimized by careful instrumentation and the use of recognized good
practice in measurement techniques. For example, the stability of electronic equip-
ment is improved by using voltage-stabilized power supplies, phase locking the fre-
quency, and by avoiding large ambient temperature varialivms. Oscillator pulling is
minimized by the use of nonreciprocal transmission-line elements or attenuator pads
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with at least 20-dB attenuation. Unwanted FM is reduced by careful modulation
practices or by the use of high-Q transmission cavities to attenuate undesired side
bands. Parasitic oscillations, causing spurious AM, can be eliminated by usual
procedures, e.g., damping, shielding; and minimizing feedback. Low-pass filters

are used to reduce the harmonic output of generators. Detectors can be calibrated
before use or the need for known detector characteristics may be avoided by use of
calibrated attenuators. Matching transformers can be used to reduce impedance
mismatches, and careful attention to reducing movement of the components will reduce
mechanical instability.

After the above precautions are taken, observations should be made to verify
the desired conditions. For example, the generator output can be observed with a
spectrum analyzer to verify the reduction in unwanted FM and spurious AM. The
oscillator-output amplitude and frequency can be monitored during load changes to
observe pulling, and the detector output can be monitored with a continuous recorder
to observe system stability.

Additional sources of error, which can be minimized by careful instrumentation
and experimental procedure, are instability of the bolometer bias supply, inaccuracy
of resistance measurement, mechanical irregularities in the slotted section and
traveling probe, excessive coupling, and incorrect position of the probe. The use
of heavy-duty, low-discharge storage batteries or solid state voltage reference
sources will generally proyidc a stable bias supply.

Resistances Rl’ RZ’ and R3 are measured at direct current and assumed to be
the same at UHF or microwayes. It was pointed out by Kerns (1949), and can be
seen from eq. (4.42), that even if the dc resistances are multiplied by a constant
real factor, there will be no error in efficiency. The effect of random errors in
resistance measurement upon the efficiency is the same as the random errors in VSWR
measurements, discussed in section b. It was seen that an error in VSWR between the
limits * 0.2 percent will produce an error in efficiency between the limits of
approximately ¢ 1 percent.

Resistance measurements between 100 and 300 ohms can be made with an accuracy of
approximately + 0.05 percent with a good Wheatstone bridge. The corresponding error
in efficiency would be approximately = 0.25 percent,

The choice of a slotted section and traveling probe is important in adjusting

I'n and T, for minimum value, and in approximating the assumed uniform, lossless line

or waveguide.
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The error caused by excessive probe coupling is difficult to evaluate analytically
(see eds. (4.46) and (4.47)). However, it is possible to determine experimentally
when the probe is sufficiently decoupled by making a series of efficiency measure-
ments, each with a diminishing value of probe coupling. When there is no further
appreciable change in the measured efficiency, the probe has been sufficiently with-
drawn. Another method of checking the effect of probe coupling consists in making two
efficiency measurements, one with the probe set to the position for maximum response
corresponding to a bolometer resistance Rl’ and the other with the probe set to the
position for maximum response when the bolometer resistance is RS' If nothing else
is changed, the two probe positions are separated by approximately A/4, so that the
phase of the reflection from the load as seen at the probe position differs by
approximately 180 degrees in the two cases. An example of this method is given
in table 4-1, where it is assumed that the average of the two efficiency measurements
closely approximates the correct efficiency with the probe sufficiently decoupled.
This assumption was found to be valid for small variations in efficiency.

It is possible'to'evaluate the effect of certain sources of error analytically.
The error in measurement of the relative voltage output of the probe, the incorrect
positioning of the probe, the generator and load mismatch, and the curvature of the
input reflection coefficient locus can be taken into account if the resulting error
in the efficiency is small.

If €15 Ep» and € are the errors made in measuring the probe relative voltages

EPl’ EPZ’ and EPS’ respectively, the error in efficiency from this source alone is
approximately
) K,(1 - K,) K, (K, - 1)
e = 1 1 3 (E]_ - 82) + _3._._1_____ (32 - 53) . (4.60)
K1 - K3 (K1 - 1) 1 - KS)
1f the individual errors lie within the range indicated by ]el) = |ezl = ]e3| <€,

the maximum error in efficiency would be less than

2K, (1 - X,) 2K, (K, - 1) : :
€ = # 1 3 e' or g = ¢ 371 e', (4.61)
(Kl - 1) (Kl - Ks) (1 - K3) (Kl - K3)
whichever is largest. A graph of this relationship is shown in figurc 4-18. Using

a 200-ohm barretter, the limiting values of K1 and K3 were determined to be approxi-
mately 1.33 and 0.75. Referring to figure 4-18, with €' assumed equal to * 0.1 per-
cent, the error in efficiency would be less than # 0.4 percent. As this is a random
error, improved accuracy can be obtained by averaging the results of a number of

measurements.
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kigure 4-18. Factor by which the random error in measuring
the relative output voltage of the probe is multiplied
in order to obtain the corresponding error in efficiency.

An analysis of the error in efficiency caused by generator and load mismatch,
curvature of the reflection coefficient locus, and incorrect probe position yields,

after some manipulation, a correction factor to apply to eq. (4.51). It is

(1-1(3 ] o, [Kl—l ] (s+a)? , 82 (Kl-l)(l—f3) . (1-K;K5) IT,| cos v,
K, -K ) 2K (K oK) o 2k 2 (K, -Kg) (K -1) (1-Kg)
K, (1-K.)

T, = {1 + |- 1 IFZI cos(y,-a) + - |F2| cos (p,-6-a) - —l——-§—-|FG| cos(wG+a)

(K, -1) (1-Ky) (K, -K;)

K., (X, -1)

e S [Tgl cos(yg*+6+a)
(K]_ ‘Ks)

(4.62)

where y and b, are the angular arguments of Ts and Fz, respectively, and o represents
twice the angular error (2BAL) in setting the probe to its correct position. (AR is
the distance the probe position is in errbr.)

In the derivation of eq. (4.62) approximations were made (very small higher-order
terms were neglected), assuming that IFG[ < 0.005, |F2| < 0.005, 6§ < 0.1, and a < 0.1.
The magnitude of the error represented by eq. (4.62) can be illustrated by considering

some of the sources of error separately. For example, if § = a = 0,

t, = 1 - |Tg| cos yg + [T, | cos v,. (4.63)
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1f |rG| = |F2| = 0,005, the total mismatch error lies between the limits + 1 percent.
If T =T, = 0,

1-K (K, - 1L - Ky)
.

) oo B oo

L (( §2|. (4.64)
2(K) - Kg) Ky Kq (Ky - Kyg)

gy *

A graph of the effect of changing the probe positioﬁ upon the calculated efficiency is
shown in figure 4-19 for K, = 1.0676, K; = 0.826, and & = 5°.

If I'p = r, =a=20,eq. (4.62) reduces to eq. (4.53), as represented by
figure 4-16.

—
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Figure 4-19. Effect of varying probe position upon the efficiency
correction according to equation (4. 64).

e. Experimental Results

The efficiencies of two commercially available bolometer mounts were measured
at 600, 1,000, 2,000, and 3,000 MHz. The efficiency of a commercially available
tunable bolometer mount (A) was measured first, and then the efficiency of a commer-
cially available bolometer mount. (B) was determined from comparative power measure-
‘ments. The data obtained in a typical measurement of the efficiency of a bolometer
mount is shown in table 4-1. It was found that the efficiency of the tunable
bolometer mount remained at approkimately 96 percent over the above frequency range,
while the efficiency of mount B decreased with rising frequency, as shown in figure
4~7%0. Because only one of each of the two types of mounts was investigated, the
measured efficiencies are not necessarily representative of these types of bolometer

mounts.



Table 4~1. Typical efficiency measurement at 1, 000 MHz,

R] = 150 ohms R1 = 250 ohms
K
Ra Epa Ra Epa
[ 150.0 1.270 250.0 1.277
2mmmmm e 200.0 1.119 200.0 1.155
K PP 250.0 1.000 150.0 1.000

IN EACH CASE, THE PROBE WAS IN POSITION FOR MAXIMUM RESPONSE WHEN R = R].
C = 16.00 (CALCULATED FROM eq (4))
n = 0.946 (MEASURED WHEN R] = 150 ohm)
n = 0.916 (MEASURED WHEN R

1 250 ohm)

n - 0.948 (AVERAGE OF ABOVE TWO VALUES)

= (0.988 (MEASURED)
C; = 1.002 (CORRECTION FOR LOCUS CURVATURE)

n, = 0.962 ((MOUNT A) CALCULATED FROM eq (18))
PAd = 0.807 mw,
PBd = 0.823 mw,

P = 1.020 (MEASURED)

ng = 0.981 ((MOUNT B) CALCULATED FROM eq (21)).

100

99

et 0
98 =
—_

97 —%T“

as} - 1 —

EFFICIENCY
PER CENT

95

0.5 1.0 2 3 4 5
FREQUENCY - KMC/S

Figure 4-20. Measured efficiency of a coaxial bolometer mount B.



Table 4-2. Estimate of limits of error in a single efficiency measurement.

APPROXIMATE
PRINCIPAL SQOURCES OF ERROR LIMITS OF ERROR
IN EFFICIENCY

3%

MEASUREMENT OF nP-B---emoco e . +0.5
MEASUREMENT OF PROBE VOLTAGE === mmocooomcom oo ¥ .4
MEASUREMENT OF RESTSTANCES === -miommoomomoo oo __ o2
GENERATOR MISMATCH= == mm o e mm e __.. + .1
LOAD MISMATCH = -~ oo e oo e e e L__. + .1
ESTIMATED LIMITS OF ERROR IN SINGLE EFFICIENCY

MEASUREMENT OF. TUNABLE BOLOMETER MOUNT=-wwmoccaeaoooo 1.3
MEASUREMENT OF POWER------ccmmm .. +0.2
MEASUREMENT OF VSWR-=-cmmmm oo e ... + .1
CSTIMATED LIMITS OF CRROR IN SINGLE EFFICIENCY

MEASUREMENT OF UNTUNED BOLOMETER MOUNT=-=--=-=cocemoax +1.6

An approximate evaluation of the error in measuring efficiency is given in
table 4-2Z. It‘represents an estimate of the limits of error in a single measure-
ment of efficiency. The actual error can be considerably less than this, if
the effect of random errors is reduced by averaging the results of a number of
measurements. A further reduction of error could be obtained by use of bette£

equipment and imrpoved measuring techniques.

f. Conditions for Linear Pl—Locus
It will be shown that the locus of the input voltage reflection coefficient
of a lussless, tuned, linear, passive, two-terminal-pair network terminated in
loads having real reflection coefficients is a straight line passing through
the origin.

The lossless condition requires that!’

1121 = 185,1 =8
2 - _ 2 . 2 = . Q2
[S1,] 1 - |s,] 1-[8y,l7=1-5
gy = Vg * ¥y, E oW, (4.65)

where { represents the angular argument of a scattering coefficient.

17 '; -
S =
€e section 3.3c, and assume Z01 202.
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The input reflection coefficient of a reciprocal two-terminal-pair network

terminated in a load having a real reflection coefficient {FLl, is from eq. (3.10),
2
81217

r =s: —_——e=
‘1 = Sy,lrg |

11 (4.65)

Because the network is matched (I = 0) when terminated in a load having a

reflection coefficient FLZ’

2
S721T 1
sy, - - a2l (4.66)
1 - 8y,1Tg,l
Combining eq. (4.65) and eq. (4.67),

Sejwll = SZIFLZIej(¢11+¢22) - - SZJIFL;lejzwlz (4.67)

or
sed¥i = jp jed(Watdae) (4.68)
It is evident that S = |T and ¢ = 0 for the above lossless, tuned, two-terminal-

L2 22

pair network. Suhstituting the results of eq. (1.65) and eq. (4.68) in eq. (4.66),

the input reflection coefficient is

re 2l 2 Il Gy, (4.69)
1 - Ty,
As ]FL] varies, the locus of T is a straight line passing through the origin.

It should be noted that the above éonditions imposed upon the network (lossless,
matched input when terminated in a load having the real reflection coefficient FLz)
are sufficient to produce a linear input reflection coefficient locus passing through
the origin, but are not necessary. The amount of locus curvature is not necessarily

an indication of the amount of loss, because it is possible to obtain a straight

line locus with a lossy network having wzz = 0.
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5. Impedance-Reflection Coefficient

5.1. Introduction

The accurate measurement of impedance or of reflection coefficient is easier in
rectangular waveguide of convenient dimensions (such as 0.4" x 0.9" inside, or WR-90)
than in coaxial waveguide. Rigid, high-quality components are readily available, and
the absence of a center conductor and supporting insulators makes it easy to slide
terminations inside a rectangular waveguide.

The development of an adjustable sliding termination for rectangular waveguide is
described in section 5.2. It is an improvement over previous designs and has nroven
useful in adjusting tuned reflectometers and in other measurement applications.

The quarter wavelength short-circuited section of waveguide is the most
accurately known standard of reflection coefficient. It nominally has a reflection
coefficient of unity, but due to wall losses, is a bit smaller. If the conductivity
of the metal walls is known, the magnitude of the reflection coefficient can be cal-
culated to very good accuracy. The absence of current flow across the joint minimizes
dissipative loss in thec waveguide joint. 1In other types of standarde, this loss
causes an error which is difficult to evaluate. The short-circuited section should
be made from a single block of metal in order to eliminate any other joint losses.

In section 5.3, formulas, graphs and conductivity data are presented to aid in
designing, constructing, and evaluating the above type of reflection coefficient
.standard.

Research on different kinds of waveguide junctions for use in impedance measure-
ments is described in section 5.4. It was found that adjustment of a tuner in one
type of waveguide junctidn produced a squared VSWR response instead of the usual VSWR
response. The use of directional couplers was found to give magniftied response.

(The ratio of maximum to minimum detector output equals k times the VSWR, where k
is the magnifying factor.) By use of a tuner, the magnification factor can be varied
and made as large as desired.

Applications of tuners in circuits for the measurement of reflection coeffi-
cient are described in section 5.5. A tuner was used to magnify the response of a
phasable load reflectometer, and to magnify the difference between two loads alter-
nately connected to a reflectometer. Finally, a reflectometer with two tuners was
investigated and analyzed. This form of reflectometer, when used with a quarter
wavelength short-circuit impedance standard has provided the basis for present-day

calibrations of impedance standards at the U.S. Natiomal Bureau of Standards.
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As was mentioned above, accurate impedance measurements are more difficult in
coaxial line than in rectangular waveguide. Accordingly, the hybrid reflectometer,
described in section 5.6, was developed. It consists almost completely of rectangular
waveguide components except for the output section of waveguide, (which is coaxial)
and the sliding loads, which must slide inside a section of coaxial line. Coaxial
quarter wavelength short-circuit impedance standards are used. A waveguide-to-
coaxial adapter connects the rectangular and the coaxial portions together. The
hybrid principle makes it easy to adapt the existing tuned reflectometer for measure-
ments in various types of waveguide other than those having rectangular or coaxial
cross section.

Reflectometer tuning and sliding load techniques were developed to measure small
reflections and losses in waveguide joints. The theory and technique are described
in section 5.7, and experimental results are given for WR-90 (X-band) waveguide

joints.
5.2. Adjustable Sliding Termination

a. Introduction

The adjustable sliding termination (A.S.T.) using a resistive vane which can rotate
and slide relative to a sliding short-circuit in rectangular waveguide (Beatty, 1957),
is particularly useful for fine tuning of reflectometers, as well as other applica-
tions. The design is applicable to lowést TE modes in uniconductor waveguides but
is not readily adaptable to other forms such as coaxial line.

There are many measurement situations where a sliding load, having low reflec-
tions, is useful. One having high reflections, such as a sliding short-circuit is
also useful. A sliding load which can be adjusted over a wide range of reflec-
tion coefficients,! ranging from zero to nearly unity, is even more useful.

For example, in tuning a reflectometer, one tunes for high directivity of the
directional coupler by reducing the cyclical variations of the side arm output as

1

guide. If the load is adjustable, a more

the load is ¢1id

sensitive tuner adjustment is possible, because one can simultaneously approach a

A resistive vane fastencd to a rotaliug and sliding short-circuit in circular
waveguide has been described (deRonde, 1957), and proposed as a variable standard

of reflection coefficient. It is not possible to obtain complete cancellation of
reflections, however.
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nflath Tesponse and zero response. It is possible by this technique to obtain
effective directivities in excess of 100 decibels aﬁd thereby increase the accuracy
of reflection coefficient measurements.

The adjustable sliding termination described here is superior in performance to
previous ones. It can be adjusted for completely zero reflection as well as almost
total reflection. It is simple in design and construction.

An adjustable sliding termination for rectangular waveguide was described by
Grantham (1951). Several years later, a similar termination was produced commer-
cially. That termination differed from its predecessor in details of construction
of the dissipative element and the reflecting antenna. Both terminations were
designed primarily to provide minimum reflection and could not be adjusted over a
wide range. The commercial termination has a range of 1.005 to 1.15 in VSWR. The
principle of the double slug tuner was used (Ellenwood and Ryan, 1953) to obtain an
adjustable sliding termination with a somewhat greater range. An adjustable sliding
termination having a wide range was described by Kato and Sakai (1955), but it was not

possible to adjust this termination for cancellation of its reflections.

b. Principle of Operation

As shown in the diagram of figure 5-1,‘this termination slides inside a
rectangular waveguide and consists of a short-circuiting piston to which is attached
a dissipative strip supported by a dielectric rod, which can rotate and slide rela-
tive to the piston. ‘The phase of the reflection from the strip can be varied by
sliding the strip, while the magnitude of the net reflection from the short circuit
can be varied by rotating? the strip. With independent control of these two motions,
complete cancellation of reflections can be obtained. On the other hand, with the
strip surface perpendicular to the electric field, minimum losses occur in the strip
and almost perfect reflection is obtained. It is possible to adjust the termination
to any intermediate condition, then to slide the entire assembly, to obtain any

reflection coefficient desirable.

2An attenuator employing a resistive strip rotating in circular waveguide was
described by Southworth (1950).
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RECTANGULAR WAVEGUIDE
/— DISSIPATIVE STRIP

TS S LS
OO

DIELECTRIC RQOD Z SHORT-CIRCUITING PISTON

Figure 5-1. Essential features of termination.

c. Theory
Apparently, the analysis of the fields inside a rectangular waveguide containing
an arbitrarily positioned dissipative strip has not been published. Lacking this
basic information, a rigorous analysis of the action of this termination has not been
attomptcd. An approximatc study bascd upon microwave circuit thceory is given below.
As shown in figure 5-2, the termination can be regarded as an attenuator
terminated in a short-circuited line of variable length. 1In terms of the scattering
coefficients Si12 Sqp» and S,, of the attenuator, the input voltage reflection coef-
ficient is?®
g 2
g =51 - S‘—“i—z-m (5.1)
227 ¢
where B = Zn/AG, and Ag equals the wavelength in the waveguide. The condition for

cancellation of reflections (Fl = 0) is

- j2pe -j284
Sy,% = Spq€ (1 + 5,6 Jabty (5.2)

This condition can be readily realized, as will be shown. Normally, [S.,| and [S,,|

'

Oo— 0

n——

S
O] 12 |

Figure 5-2. Approximate equivalent circuit representation.

3See for example, eq. (3.10).
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ch less than unity, and the approximate condition for cancellation of reflec-

are mu
tions 1is
2 . j2BL
Sp2° = Sppe” (5.3)
Rotation of the strip will, in general, change both [S1,%] and [S;11- A typical

yariation of these quantities with 6 (the angle between the electric field direction

‘and the normal to the surface of the strip) is shown in figure 5-3(a). At the

angle 6c, the magnitudes of Slz2 and S11 are equal, and it is possible to obtain

cancellation of reflections by sliding the strip, varying &. If the strip is too

short, |5122] will not decrease to equal [S;;], @> shown in figure 5-3(b). However,

it is possible to increase ]Slll by adding a reflecting object at the end of the

strip, so that cancellation of reflections can again he ohtained as in figure 5-3(c).
Although this discussion of the cancellation of reflections is based upon the

approximate condition of eq. (5.3), it should be noted that exact cancellation according

to eq. (5.2) is possible under almost the identical conditioms.

=10

T

UNIT CIRCLE

o
no

N
o
no

N

ﬂ
,,,///// _’//////
(a) (b) (c)

RECTANGULAR STRIP RECTANGULAR STRIP METAL REFLECTOR ADDED
035'x15" 035075 TO INCREASE ISy

Al

Figure 5-3. Dependence of lSu] and ISIEQI upon rotation of thin rectangular strip; (a) rectangular
strip 0.35 inch X 1.5 inches, (b) rectangular strip 0. 35 inch X 0. 75 inch, and
(c) metal reflector added to increase lSn|.
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d. Design

A number of considerations can influence the design (Beatty, 1960) of the termina-
tion. If the primary need is for a reflection-free termination, with no need for a
wide range of VSWR, it seems advisable to use a thicker strip of dissipative material
such as Synthane. The extra thickness can give added strength to a long, tapered
strip, which will require less rotation to achieve cancellation of reflection, and
give a smoother adjustment which is less frequency sensitive than with shorter strips.
Examples of A.S.T.'s for different sizes of waveguide are shown in figure 5-4, and a
diagram of typical variation of |S;,*| and lslll is shown in figure 5-5.

If a wide range of adjustment of VSWR is desired, a thin strip is required. IRC

resistance strip may be used to obtain fairly high ranges, but a dissipative film on

Figure 5-4. Adjustable sliding loads for different waveguide sizes.
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12

Figure 5-5. Variation of ISHI and 1515[ with rotation of thick tapered strip.

a thin mica strip is capable of greater range. A thin film has little strength and
it may be desirable to add a reflecting disk or rod as shown in figure 5-6. The

disk or rod permits a shorter strip to be used, while retaining the ability to cancel

reflections.



METAL DISK

<

DIELECTRIC ROD

, )
== 7

RESISTIVE STRIP

Figure 5-6. Short strip and reflecting disk.

Figure 5-7. Mechanical controls permitting independent adjustment
of rotation and sliding, with control locking.
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Figure 5-8. Mechanical controls permitting coarse manual adjustment and locking,
followed by fine independent adjustments of rotation and sliding.

Control of the mechanical motion required may be achieved by the arrangements
shown in figures 5-7 and 5-8.

Independent control of the sliding and rotation of the strip is achieved in
both arrangements, but in figure 5-8, the strip may be rotated and slid by hand until
the clamping screw is used, which clamps the dielectric rod supporting the strip éo
that it can only be moved by the limited fine adjustments A and B. One adjustment
of sliding (knob A) and an independent adjustment of rotation (knob B) are provided.

An adjustable load having satisfactory performance over the recommended frequency
range of WR-90 (X-band) waveguide was constructed, using a rectangular IRC resistance
strip 200 ohms per square, 0.35 inch x 1.50 inches. The strip was not tapered, but

mounted on a dielectric rod as was shown in figure 5-1.

a. Introduction
The purpose here is to derive equations and to present a graph (fig. 5-15) for
the determination of the return losses of microwave impedance standards. It applies

to impedance standards consisting of quarter-wavelength short-circuited sections of
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rectangular waveguide or coaxial line (Beatty, 1967a) for which the conductivity is
107 mho/m (closely corresponding to platinum). The curves for 50-ohm coaxial line
are each labeled with the appropriate inner diameter of outer conductor. The curves
for rectangulér waveguide are each labeled with the appropriate WR (USA) number except
for two WG (British) numbers and two IEC-R (International) numbers for which there
are no WR equivalents. All of the IEC standard sizes of rectangular waveguide are
covered. See Brady (1967) for cross-referenced waveguide designations. The return
loss Lg corresponding to a given éonductivity ¢ may easily be calculated by dividing
the return loss read from the graph by fhe square root .of the given.conductivity
normalized to 107 mho/m. For example, if one rcads LS = 0.020 dB, and the normalized
conductivity is 4(4 x 107 mho/m, closely corresponding to gold), the return loss for
an impedance standard made of gold (or gold-plated) is 0.020 + V4 = 0.010 dB.

The bases for figure 5-15 are the following formulas. By definition, the return

loss 1is

- 1
S

where IPSI is the magnitude of the reflection coefficient of the impedance standard.

For a lossless quarter-wavelength short-circuit, IFS[ is ideally unity,

b. Coaxial Line
For a short-circuited quarter-wavelength section of air-dielectric coaxial line*

operating in the TEM mode, it can be shown’® as follows that

2 60X
Irgl =1 - “Ep [, (1 + %] , (5.5)
ZO 4bZO
where
ZU
Rep = 170765 = resistance of end plate,®

Zg = 60 n % = characteristic impedance,
a = outer diameter of imner conductor,
b = inner diameter of outer conductor,

g = conductivity of metal,

It is assumed that the same metal is used for inner and outer conducfors and for the
short-circuiting end plate.

SEquation (5.5) is equivalent to eq. (2) of Beatty and Yates (1969). (Note that b
and a refer to diameters, not radii).

®See, for example, p. 70 of Jackson (1951).
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skin depth in metal = 1_ , and

Yrfuo
permeability of metal (4m x 10~

o
i

7 H/m if relative permeability u is

=
]

unity) .
consider first the relationship between the magnitude of the reflection coef-
ficient |T| and the incident, reflected, and dissipated powers P;, Pp, and Prs
respectively. The incident and reflected wave amplitudes a and b are indicated in

figure 5-9.

Figure 5-9. Schematic diagram of quarter-wavelength
section of short-circuited waveguide.

By definition,

acl
v

|F5|2=-b—2‘—R=—I D.q -2 (5.6)
a PI PI PI
where
PR = reflected power,
PI = incident power, and
P, = dissipated power.

It follows that
|FS]=\h ~EEE 1—'5Lu (5.7)
Py 2p

The ratio of dissipated to incident power is calculdted as follows. For a
single propagating mode in lossless waveguide of usual cross sections, the wall
current distribution is well-known. The resistance of the metal walls to the
current flow may be calculated corresponding to a given value of the skin depth §.
Une then calculates the dissipative 1oss by integrating the I*R lousses. The expres-
sions for P, and P

D I

in the ratio. It is of course assumed that the losses are small enough so that the

will both contain an IM (maximum current) term which cancels out

perturbation of the lossless current distribution can be neglected.
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Figure 5-10. (a) Radial and (b) annular current flow in circular rings.

At high frequencies, current flows in the '"skin'" of a metal. The resistance

R of a strip of metal is’

R= 2 ' (5.8)

where % is the length in the direction of current flow, o is the conductivity of the
metal, and A is the area of the cross section through which the current flows. The
case of figure 5-10(a) corresponds to the short-circuiting end plate of a coaxial

line. The resistance between the inner and outer conductors is

“dr 1 on E' (5.9)

R _ 1
EP ~
g 2mrs 2708 a

SR ey
1]

The loss in the metal can now be calculated, assuming the current is distributed

in the known manner for the TEM-mode as shown in figure 5-11.

"See, for example, Michels (1961), p. 982.
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Figure 5-11. Assumed current distribution in quarter wavelength
short-circuited section of coaxial line.

The I2%R loss Ppp in the end plate is

. I2

Prp = IZRpp = —M gn 2, (5.10)
2wad a
The I%R loss POC in the outer conductor is calculated using the element of
figure 5-10(b).
A4 2 I2
P = f I cos 2_'”1 ‘dz__ = M . A_ (5_11)
oc M
0 A mbo § 2wbo§ 4

In a similar way, the loss PIC in the inner conductor is

A4 2

2m7 dz b

Prn = f (I cos -——} (———_} = 2 P... (5.12)
IC o M A 7acé a oc

The total dissipated power is

IZ
i _ _ M b A [1 1]
P, =P + P + P = n =+ = (= + =, (5.13)
D EP oc Ic 2mgé [ a 4 'a b }

The incident current I is one-half IM' It follows that the incident power is

p. = MO (5.14)



The magnitude of the reflection coefficient |FS| of the short-circuited quarter
wavelength section is obtained from eqgs. (5.7), (5.13), and (5.14). It is

gl =1 w2 L), (5.15

WUSZO a 4 la b

The above equation may also be written

T
|1"Sl51-___1_,_(1+9g l.%(l*-]il]’ (5.16)
i Z € 4 a
60m08 . = 0
T
or
R € T
’FSI 2 . EP 7T {1 £ 00 /7 A (1 + E]l. (5.17)
ZO My ZO ey 4b a
This reduces to eq. (5.5) if M, == 1.

In the following example the components of power loss are individually calcu-

lated. Suppose that f = 4 x 10° Hz, ¢ = 107 mho/m, M, = e, =1, u=4m1x 10-7 H/m,

Z,=50Q, a=0.304 cm, b=20.70 cm, and I,, = 1A. We calculate the skin depth

0 M
- -4 = = = =
6 =2.52x 107" cm, Ry = 0.00527 2, Py, = 5.27 mi, Pye = 16.9 mW, Py, = 38.9 mi,
PD = 61.1 mW, and PI = 12,5 W, From eq. (5.7),
Irgl =1 - 820 1075 = 0.99755,
25.0

and from eq. (5.4), LS = 0.0213 dB. These results agree with Beatty and Yates (1969),
and show in addition the distribution of losses in end plate, inner and outer
conductors.
In the event that the attenuation constant o of the line is more easily deter-
mined than the conductivity o, the reflection coefficient is determined as follows.
The total loss in the inmer and outer conductors may be written in terms of the
attenuation constant o of the coaxial line. TFirst consider that the end plate is

lossless, and we can write

r = e Y (5.18)
orT
Irgl = e7®% = 1 - 204, (5.19)
Similarly
[Tgl? & 1 - 4o, (5.20)
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Comparison with eq. (5.7) shows that
IC _
= 4&[—1 = al. (5.21)

we can regard the losses in the end plate P as corresponding to an equivalent length

EP
of line 2E such that

EP
— = dotg. (5.22)
1
1t then follows that
x A
Tl =1 - 2”(} ¥ .’LEl' (5.23)

We can determine lE from eqs. (5.22), (5.21), (5.10), (5.11), and (5.12). It is
L. = 39 EE . b (5.24)
E o 6oV b, 1+ b/a _ et

in the prefious example, it equals 0.177 cm, and a = 0.596 x 10_3 Neper/cm = 15.8 dR

per 100 feet.

c. Rectangular Waveguide
For a quarter guide wavelength, short-circuited section of rectangular wave-

guide operating in the dominant TE mode, it can be shown as follows that the magni-

1,0
tude of the reflection coefficient is (Beatty and Yates, 1969),
- Ag
[Tgl # 1 - 20 T e (5.25)
where
o« = attenuation constant (Np/cm),
AG = guide wavelength (cm),
zEP = Jength of waveguide having same loss as short-circuiting plate (cm), and
&
X~
= G
Lep = b - — (5.26)
1+ Zb[x 1
a \A.
C

One proceeds in the same way used previously for coaxial line, calculating the
ratio of dissipative to incident power and substituting into eq. (5.7) to obtain

eq. (5.25).
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The
incident
guide is

shown in

distribution of electric and magnetic fields in the TE mode for a wave

1,0
upon a quarter guide wavelength short-circuited section of rectangular wave-
shown in figure 5-12 and the corresponding wall current distribution is

figure 5-13.

SIHIORT -
CIRCUIT

<

DIRECTION OF INCIDENT TE1 o MODE WAVE
£

Figure 5-12. Electric and magnetic fields in quarter wavelength section
of rectangular waveguide propagating TE 1,0 mode in +Z
direction and short-circuited at Z = 0.
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SHORT-CIRCUIT
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-DIRECTION OF
INCIDENT
TE.‘ 0 WAVE

Figure 5-13. Wall currents in short-circuited quarter wavelength
section of rectangular waveguide with incident TE;:

mode wave.

mode, incident wave in +z direction, it can be shown that

For a TEl,O
HZ = A[Cos[ﬂc_l}(l + fzejZBZ)e’jBZ
a
_ . B . (nxl j2Bzy .-jBz
H = ~— Afsin|—= 1 -T.e e
pox Ke { a ]( z ) (5.27)
E_ = -j B 7 Alsin{™ 1+t ejZBz)e-sz
y K h a Z
C
where
E
a._._z__’](c—l’zhg,l=m_,
Ag a H 8

and T, = voltage reflection coefficient at z = 0 (-1 for short-circuit).
It is implicit in eq. (5.27) that sinusoidal time variation with angular fre-
quency w exists, and that p is the permeability of the medium (usually air) within the

waveguide. The factor A indicates the level of the excitation and for convenience
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the rms value of the field strengths are denoted by E and H. The incident power
P; (at z = 0) is
P; = Re [ [E x H*] - ¢, dx dy, (5.28)

where gz is the unit vector in the +z direction. Upon integration,
- (B2 ab
Py o= |5 2, A2 —. _ (5.29)
Kq 2
The waveguide walls are assumed to have high conductivity o and small skin depth
§ resulting in small losses which do not appreciably perturb the TEl 0 mode fields.
td
One may then calculate the small wall losses by integrating the I2R losses in the
metal.

In order to calculate the resistance to a current element, one uses the elements

shown in figure 5-14.

—{'! l/é | /r“‘/dz
L A

—»i l—dx — ,<—5

dx

R = —2—

(a) R = b (b) R = b (c) X gddz
ad8dx oddz R = 92

’ z oddx

1 mre 5-14. Elements used to calculate I°R losses in {a) shorting plate,
(b) narrow walls, and (c) broad walls.

It is convenient to write e§. (5.27) in the form

7 -2j/\l’cos(ﬁ£]] sin gz
a

o]
]

(5.30)
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One can now calculate the dissipated power as follows. The magnitude of the current

gensity in the short-circuiting plate is

. mx
[Jgpl = IH,| = 2[§—} A(51n(-l?. (5.
KC a
The power Pgp dissipated in the short-circuiting plate is
? b 8 )2 ,» ab
P = [ (IJ fax)? = 2= A% ==, (5.
SP SP
o oddx Ko cé
The ratio of Pgp to Pris
P
SP _ 1 - T . (5.
PI 2062h wHo A
The magnitude of the current density in the narrow walls is
[Igw! = |H,| = 2A sin Bgz. (s
The power PNW dissipated in the side walls is
}p/4 a2 , bAg
Pyw = 2 [° (| Iywldz) = A* —2, (5
NW o NW oddz ad
The ratio of PNw to ZPI is
2
PNW ) Ag } TAG s
2 3 :
2Py 4[B)? a7 55 28°wn08
K. h

31)

32)

33)

.34)

.35)

36)

The magnitudes of the x and z components of the current densities in the broad

walls are

9] = |H,]| = ZA(cos(EE]l sin Bz
a
13,1 = [n ] = 2[8) a sin(.’i’i] cos 8z. Gs.
KC " la
The power dissipated in the broad walls is
Z=) /4 2
x=a G arnA
d
=2 [ [dodanr 2. (20 e (s.
o o oédz oddx 208
The ratio of Py to 2Pp is
P A Kny 2
W ———SL—-[l + (~9} ]. (5.
ZPI ZbZhOG B
The total power dissipated is
P. =P + P + P (s.
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and the magnitude of the reflection coefficient of the short-circuit is

Py p
ITgl = 1 - —==1- —. (5.7)

I 1
In the event that the attenuation constant o of the waveguide is known, it is
convenient to use eqs. (5.25) and (5.26) which are derived as follows, assuming that
(1) the short-circuiting plate and the waveguide walls are one continuous piece of
metal having no lossy joints, and (2) the waveguide section is filled with a medium
such as air whose electrical properties are not significantly different from those of
a vacuum.

If we assume for the moment that there are no losses in the short-circuiting

plate,
G
205 A P + P
Iyl =e * 21 -q-8=2; . B (5.41)
2 ZPI
Thus
P + P
o= 2, " 7w (5.42)
AG ZPI
or from egs. (5.36) and (5.39) it follows that
Aoy 2 V
o = AT (_gl (1 + E_} + 20 (5.43)
wpcSaAG 2a 2b 2b
or
2
1+ Z_b_(f_c]
- 1 a ‘\f
a = . s (5.44)
1207mbo§ [f lz
c
-

where f and fc are respectively the operating frequency and the cutoff frequency of
the waveguide.

It is convenient to account for the losses in the short-circuiting plate by adding
an equivalent length fp, of waveguide such that the reflection coefficient |T] is

given by eq. (5.25). One derives eq. (5.26) to calculate %, as follows. Since

P + P

Bw _ Fsp
I ¥y

NW

Irel e
Tef 21 - Zu(—— + % ] 1 -
S 4 EP S gp



it follows that

P X P
P N S I I (5.45)

EP
2o, ZPI 4 PNW + PBW

substitution of eqs. (5.32), (5.35), and (5.38) into eq. (5.45) yields eq. (5.26).

It is interesting that the expression far ¢ does not involve the conductivity

EP
of the metal.

An example of the calculation of |I'| for rectangular waveguide follows. Given
£f=9.4 GHz, b = 1.016 cm, a = 2.286 cm (WR-90, or X-band waveguide), o = 4.0 x 107

mho/m, we calculate A = 3.189 cm, XG = 4.451 cm, A, = 4.572 cm, and & = 0.364 cm,

C EP
a = 1.59 x 10'4 Np/cm, IFS| = 0.99953, and LR = 0.00408 dB. 1If we have 10.64 W inci-
dent power, then PD = 10 mW, PSP = 2.46 mW, PNW = 2.20 mW, and PBW = 5.34 mW. The

distribution of losses was calculated from the following formulas:

Psp . 2
, 5.46
Py 1+ Acl4 ( )
3
EP
P + P
wt e 1 (5.47)
3 )
D EP
1 + 7571
and
P
BW _ 1 . 1 . (5.48)
Pp. Lgp
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Figure 5-15. Calculated return loss of quarter wavelength short-circuit impedance
standards. Basis of normalization: o = 10’ mho/m. Curves for
coaxial line are marked with the appropriate inner diameter of outer
conductor. Those for rectangular waveguide are marked with
appropriate standard waveguide designators.

d. Errors and Design Information
It is estimated that the errors due to approximations in the formulas will be
less than the errors in reading the graph of figure 5-15 over the range of values
shown. Thus, one can expect the error in LS determined from the graph to be within

+ 2 percent. To this must be added errors from other sources, such as the error in

determining conductivity, etc.

Table 5-1 gives bulk conductivities normalized to 107 mho/m for a number of metals
which might be used to construct quarter-wavelength short-circuits. In the ahsence
of measured conductivities at the frequencies of interest, the values in this table

may be used with probably only a few percent error in Lg in most cases.
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Table 5-1. Bulk conductivity normalized to 10” mho/m
of various metals at 20°C.

SILVER 6.29
COPPER (ANNEALED) 5.80

GOLD 4.10
ALUMINUM 3.54
MAGNESIUM 2.17
BRASS 1.19-1.56
NICKEL 1.28
PHOSPHOR BRONZE 1.28
PLATINUM 1.00
STAINLESS STEEL ~0.110

*HANDBOOK OF CHEMISTRY AND PHYSICS. 41st ed.
CLEVELAND, OHIO: CHEMICAL RUBBER PUBL. CO.,
1959-1960. p. 2588.

5.4. Syuared VSWR and Magnified Responses

a. TIntroduction

The following discussion of research on unusual responses obtained from various
kinds of waveguide junctions preceded and is related to the research on tuned
reflectometers described later in section 5.5. The discussion is a revised version
of Beatty (1959).

In most microwave impedance measuring instruments, such as the slotted line,
the resonance line, and rotary standing-wave indicators, the ratio of the maximum
to the minimum response (magnitude of voltage output to detector) is ideally equal
to the voltage standing-wave ratio (VSWR) of the termination under test or
calibration.

Other radically different types of responses are obtainable from various kinds
of waveguide junctions. The responses to be discussed here have been called magnified
and squared VSWR responses for reasons to become apparent.

A simplified explanation will be given first, followed by a more complicated
mathematical description.

The differences among responses are shown in figure 5-16, three response curves

calculated for the same termination.
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b. Simplified Explanations

(1) Squared VSWR Response -

A simplified explanation can be given for one system yielding squared VSWR
response. Other systems which have been devised apparently do not permit simplified
explanations and have not been thoroughly analyzed. Enough theory will be given
however, to permit their use for measurement purposes.

The system shown in figure 5-17(a) comsists of a straight secfion of uniform
lossless waveguide (which may be either coaxial line or rectangular waveguide, for
example) with oppositely located coupling probes for generator and detector. A short
circuit which may be adjusted in position terminates one end of the uniform waveguide
section while the other end is terminated in the sliding load to be measured. In this
system it is necessary to vary the phase of the load by sliding it inside the wave-
guide, but in other systems to be described, this is not always required.

Referring to the simplified model of figure 5-17(b),

Z
E=e —%2 o4z =i, L1 (5.49)
. + Z G™P G 1 1
G P =t
ZS ZL

If the short circuit is located AG/4 from the probes, Zé = o, and
-j2B%
1+ PLe

S N 5.50
6 1 - Tye J28% ( )

E=igZ =i

As ¢ varies, |E| goes through maxima and minima. The ratio Pp of the maxima to the

minima 1is
) 1+ lTLl 2 o,
pA E - pL’ (5.51)
1- ]

where L is the VSWR of the load. The meaning of other symbols used above should

become clear upon reference to figure 5-17(b).

(2) Magnified Response
A system yielding magnified response is shown in figure 5-18,
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Figure 5-16. Response curve of three measurement systems with termination
having a VSWR of 1. 26.

(a) idealized slotted line,

d=cll +Kl'le-j261]

(b) squared VSWR response,

. [1 +T -j26l ]
d=c {12 T -3zl

(<) magnified response,

d=c"[1 +KFLe—jZBl].

GENERATOR
SHORT
CIRCUIT J l

I~ LUAD
L,
I
DETECTOR

(a)  DIAGRAM OF SYSTEM (b)  SIMPLIFIED MODEL

Figure 5-17. Diagram and simplified model of one system yielding
squared VSWR response; (a) diagram of system,
(b) simplified model.
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Figure 5-18. Diagram of simplified system to illustrate magnified response.

A directional coupler is connecfed to respond mainly to the wave reflected from
a phasable or sliding termination whose VSWR is to be measured. For simplicity, it
is assumed that the generator and detector do not produce reflections (TG =Ty = 0),
and that no reflections are produced in arm 2 by the directional coupler (822 = 0).

The signal coupled to the detector has two components. One is fixed and exists
because the directivity is not infinite. The other is from the load reflection and
varies in phase as the load is slid inside the waveguide. As the relative phase of
the two components vary, the magnitude of the resultant varies. If the components
are of approximately equal magnitudes, the range of variation of the resultant may
be large even though the reflection from the termination may be small.

Inspection of the diagram of figure 5-18 leads to the following équations
describing the response.®
by = bS5y * 8p855T e 128N = bgsy (1 + krpeTI2EY), (5.52)

The response is of the same form as that of the idealized slotted line (see
fig. 5-19) excepting that Ty is multiplied by the factor K. Since |K| may be very

large (it approximately equals the directivity ratio of the directional coupler), one

may consider Iy, to be magnified by the factor |X}, leading to the term magnified

¢In this equation, b represents a wave amplitude, S a scattering coefficient of the
directional coupler, and FL the voltage reflection coefficient of the load.
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response. It should be noted however that the response variation will increase as
one increases |K| up to the point where IKrLl = 1, and then will decrease with

further increase in K.

c. Analysis
Both magnified and squared VSWR responses may be analyzed by considering the
generalized treatment of MacPherson and Kerns (1956) of a 3-arm junction measurement
system for phasable loads. Such a junction is shown in figure 5-19, where it has been
assumed for convenience that the necessary variation in phase is obtained by changing

the length & of uniform, lossless waveguide.

e et
i

TERMINATION

GENERATOR JUNCTION
L]

DETECTOR

Figure 5-19, Three-arm junction with phasable load.

Instead of using the gathering coefficients employed by MacPherson and Kerns,
the solution for by is obtained in terms of the more familiar scattering coefficients

(Schafer and Beatty, 1958) and may bhe expressed as follows:

P , 1 j2ge
i+ KFLe j2B8% i281 1 + KFL e
b, = C = CKr;e (5.53)
ks . ~32B4 L X T _-j2RL’ .
L= Tyl 1- e
where
bALS
c - Go31 ’
(1-S43Tg)  Sy3Tp
S31Tg (1-S,.Tp)
55153
K=-2122 g
S 22
31
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and

(1-8y;Tg) 812 “Sy3Tp
S1Te S22 “SasTp
P S31Tg S35 (1-S55Tp)
(1-841Tg)  Sy3Tp
5337 (1-833Tp)

In the above expressions, the component of the emergent wave amplitude supplied
by the generator is bG = a; - ber’ where a; represents the amplitude of the wave
incident on the junction in arm 1. Symbols of the form Sm o are the scattering coef-

3

ficients of the junction, and T FD’ and FL are the voltage reflection coefficients

G’
of the generator, detectof, and load, respectively, as indicated in figure 5-19.

The reflection coefficient Toy is that which would be obtained '"looking into''
arm 2 if the generator was turned off and its impedance (as observed at Tl) was
unchanged in so doing.

The variation in lbgl as we vary the phase (wL) of PL is defined to be the response
of the systems represented by figure 5-19, and is determined by eq. (5.53).

The properties of eq. (5.53) will be examined in an effort to classify types of
responses obtainable. It is evident that the parameter C affects only the level of
the response, while the form of the response curve ([b3[ vs ;) is affected by the
parameters K and T

21°

We may consider the response for the conditions T = 0, |K| = 1, the usual or

2i
normal type of response, since it leads to the form obtained in the case of an
idealized slotted line.

The response form previously referred to as magnified response is obtained when
Ty = 0, and |K| is unrestricted. However values ol |K| may rauge from zero to
infinity, and it is possible to have a magnification factor |K| greater or less than
unity. The case where |K| is less than .one is of dubions interest, but the pos-
sibility of |K| greater than unity appears especially attractive for the measurement
éf small reflections.

If FZi differs from zero, it will cause distortion in the response curve, which
is considered undesirable. However, a distinctly different type of response may be
obtained if [TZil = 1, and if the phases of |K| and IFZil are equal. This leads to
squared VSWR response if |K| = 1. This type of response is not only curious, but

may prove useful in some measurement applications.



Actually |F2il is less than unity in actual (not lossless) systems, so that the
ideal squared VSWR response may‘be closely approached with an actual system, but never
i
quite reached.

A fourth type of response is obtained if the phases of K and TZi are the same,
T | =1, and |K| is unrestricted. The ratio of maximum to minimum detector signal
21
1evel corresponding to eq. (5.51) is
1+ KT |

Py = ———— py - (5.54)
Ao ke P

1t seems appropriate to call this a magnified squared VSWR response, and it may have
applications in the measurement of large VSWR.
This completes the classification of responses, since conditions other than

those mentioned may be regarded as causing distortions of the types described above.

d. Means of Obtaining Various Responses

Examples have already been given (figs. 5-17 and 5-18) of junctions permitting
magnified and squared VSWR responses.v However other types of arrangements are pos-
sible and offer a variety of measurement systems, each with its possible advantages
and disadvantages.

In order to closely approach squared VSWR response (ry;l =1, |K| = 1) it becomes
evident that the 3-arm junction should have low loss and low coupling to the load.
(This may be shown from a consideration of the conditions imposed upon the scattering
coefficients by losslessness.) These conditions are not sufficient however, as one may
conclude after trying junctions which satisfy only these conditions. It is necessary
for X and r,; to have the séme phase, and this is obtained by some tuning device,
such as the adjustable short-circuit in ftigure 5-17. There may be some difficuity
in obtaining the desired response in some cases, because it is not always possible
to obtain corrcct phasc rclationship, but thce junction forms represented in figure
5-20(a-d) have all ben found experimentally to permit a close approach to squared VSWR
response by proper adjustment of the tuner. The arrangement of figure 5-20(e) should
also permit squared VSWR response, but has not been constructed or tested.

Magnified Response occurs upon making |K| greater than unity while FZi = 0.

It evidently cannot be obtained with a lossless junction, for then |K| = 1. If it
is assumed that we can always make re=20, then in would equal SZZ’ and this would

vanish, so that K = 821832/831° The directional coupler connected as shown in

figure 5-18 evidently permits magnified response since |832/531| is the directivity
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ratio and may be quite large while |821| is usually between 0.7 and 1.0. The use
of auxiliary tuners with a directional coupler permits greater versatility since one
may adjust the directivity ratio upwards or downwards with one tuner, then adjust
the other tuner to make I’Zi = 0.

the order described. Referring to figure 5-21, the tuner in arm 2 is adjusted

These adjustments are independent only if made in

first in order to obtain the desired value of |K|, then the tuner in arm 1 is

adjusted to make I’Zi = 0.
GENERATOR
GENERATOR
TUNER ||l 1040
ia) 1080
I )
DETECTOR
(a)
TUNER GENERATOR
GENERATOR DETECTOR

COUPLING
LooP

RIS

T

DETECTOR

(c) L0AD

LOAD

GENERATOR
[ |—tow
e)
OETECTOR

TUNER

NOTE: AFTER CORRECT POSITION OF TUNER IS FOUND,
iT MOVES WiTH COUPLING LOOPS INSIDE COAXIAL

LINE |

Figure 5-20. Schematic drawings of junctions permitting squared
VSWR response: (a), (b), {c), {d), {e).
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e. Measurements Using Squared VSWR Response

Any of the junctions of figure 5-20 or their equivalents may be used if the
unknown is phasable. This requirement is satisfied if the unknown termination slides
inside the waveguide. In principle, a phase shifter or line stretcher may also be
used to provide the phase variation, but in practice, they are less than perfect,
ieading to additional errors in measurement. If the unknown termination does not
slide within the waveguide, the arrangements of figures 5-20(d and e) may be used.
Either flexible cables must be used to couple the generator and detector to the
moving junction, or the generator and detector may be arranged to move with the
junction. If the termination is not too large, it and the waveguide section could
be moved, keeping everything else fixed. The arrangement shown for rectangular wave-
guide is not readily adaptable to operation with coaxial line. However the arrange-
ment of figure 5-20(e) should be satisfactory for operation with coaxial line.

The correct adjustment of the tuner is made with I; = 0 and corresponds to
maximum detector output for figures 5-17 and 5-20(a) and to minimum detector output
for the others shown. When the correct adjustment has been mﬁde, the response curves
will be symmetrical about the maxima and minima.

A correction may be made for deviations from the ideal conditions |K| = 1,

[FZi[ =~ 1, using the methods indicated by MacPherson and Kerns (1956). Instead of
analyzing the response curve to obtain the parameter y required for the correction,
a shorter method is as follows. Only the real part (g) of y is needed to obtain an
intermediate VSWR o1 from the apparent VSWR Ppe It can be shown that to a good

approximation (to the first order in g and b),

1+ |Krp| 1
nI=1—-———=ﬂ+7(g+l)(pA-l), (5.55)
b !KFLl
where
[b| (T = 0)
(g +1) = L

lb3]max(|FL| =1
It is still necessary to determine |K| in order to obtain It | or oy This may be

done by measuring Py when a termination of known |TL| is connected.
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Figure 5-21. Directional coupler with auxiliary tuners.

f. Measurements Using Magnified Response
The arrangement of figure 5-21 may be used to measure the voltage reflection
coefficient PU of an unknown termination. Two basic methods will be outlined.
In the first method, the auxiliary tuners are adjusted for the conditions
I,; = 0 and XK = ». Inspection of eq. (5.53) shows that |b3[, the magnitude of the
detector arm wave amplitude will then be proportional to |I;|. One then measures

the ratio r of the |b3| values obtained when the load is first unknown (PU), then

a standard of known reflection coefficient magnitude IFq]. Then
lrul = rlrsl- (5.56)
The adjustments of the tuners preceding the measurement is as follows. One adjusts the

tuner in arh 2 until no variation is observed in |b3| as one slides a termination of
low reflection inside’.the output waveguide. Then the tuner in arm 1 is adjusted
until no variation in |b,| is observed as one slides a termination of high reflection
inside the output waveguide. If necessary, the above operations are repeated in

sequence until no variation in |b is observed as either termination is slid.

5
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In the second method, the tuner in arm 2 is adjusted (with the unknown connected
to arm 2) until the detector output is zero. Then KTy = -1. The tuner in arm 1 is
then adjusted until T,. = 0. A reflection standard of known |Tg| is then connected
to arm 2, and the phase of FS is varied. Substitution of the above conditions into

(5.53) leads to

eq.
Pa = ibS]max = !FUI - lTSI ) (5.57)
lbglmin Hrui - ‘PSH
In the event that |PS[ = 1, (approximately true for a sliding short-circuit) then
Py T Py
Note that it is unnecessary to vary the phase of T the reflection coefficient

U’
of the unknown termination in either method. 1In the second method one needs to vary
the phase of FS, but this is easily done if a sliding short-circuit is used.
Alternatively a fixed reflection standard may be used if a suitable line

stretcher is incorporated into arm 2 of Lhe medsuring ilnstrument.

STANDARD
—— TOWARD WAVEGUIDE  SECTION
GENERATOR - ~ .

L

Figure 5-22. Line stretcher and scattering coefficient representation.

Because of the special condition T 0, the line stretcher need not be of the

2i T
constant impedance type, since reflections that it may introduce may be cancelled

by reflection from the tuner in arm 1. Also, the reference plane for arm 2 may be
located in the uniftorm wavegulde section of the line stretcher between the source ot
its reflections and the load. As shown in figure 5-22, the reference plane T2
remains fixed although the output waveguide ‘and load move. The line stretcher must
be stable however, so that the parameters Sll’ 812, and S22 with respect to the

and T, do not vary as it operates.
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With the addition of the line stretcher, the second method described above may
be called a magnified difference method, since the smaller the difference between

[Tl and [Ty|, the greater the variation in [bg| as the phase is changed according

to eq. (5.57). The arrangement of apparatus employing a waveguide line stretcher

is shown in figure 5-23. Results of measurements of the VSWR of two calculable

standards (Booth, 1961) by the above techniques are shown in table 5-2.

DETECTOR
b 41T,
LINE e
TUNER TUNER STRETCHER 2i*TTu
1 ' \\\k, N7 ™ “:
! IIIII A ains . A
GENERATOR | S TERMINATION
I = ‘%r__‘___
f DIRECTIONAL Y I —
T
COUPLER DIELECTRIC SECTION 2
HAVING
STANDARD
DIMENSIONS
Figure 5-23,

Arrangement of apparatus for magnified difference method.
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Table 5-2. Comparison of calculated and measured VSWR of half-round
obstacle impedance standards of rectangular waveguide using
a magnified response measurement technique.

RADIUS (r) 0.1000" 0.1400"
POSITION (£) 1.000" 1.500"
CALCULATED VSWR
ASSUMING NO LOSSES 1.226145 1455465
CALCULATED VSWR
CORRECTED FOR ATTENUATION 1.2253 . 1.4543
MEASURED VSWR |.2247 1.4538
DEVIATION 0.05% 0.03%

ESTIMATED ATTENUATION =0.070db per foot

~——F—  FREQUENCY-93946 Kmcis £0.015%
Q 000" |
_ T l\__l
AtL__ -VSWR
i

g. Results
The techniques employing magnified response give promise of increased accuracy
in the measurement of low and intermediate VSWR. Accuracies of approximately 0.1
percent in VSWR up to 2.0 have been achieved, and perhaps an order of magnitude

better than that is possible.

5.5. The Tuned Reflectometer

a. Threcc-Arm Waveguidc Junctions
In the following, some methods for the accurate determination of reflection

coefficient magnitude and VSWR will be discussed.

A number of measuring systems can be represented by a three-arm junction with

arms connected to a generator, detector, and the unknown.
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The variation in detector signal (square root of detector power) as ome chang
the relative phase of the reflection coefficient of the unknown is called the respo. e
of the system. One can obtain different types of response by choosing junctions
having certain properties to be discussed. A careful analysis® of this type of
measuring system reveals that thce amplitude b3 of the output of the third arm (con-

nected to the defector] may be expressed in a form similar to eq. (3.158)

20 2| L
Lt S5
551 S32
by = b , (5.58)
@-Spa¥ed Susfo |0 Ly
217
S31Tg  (1-S33Tp)
or similar to eq. (3.162),
3., 1+ KT
b, = b 31 . L (5.59)
(1-5;4T¢)  S43Tp L= Tyl
53176 (1-833Tp)

where terms of the form Shon 2Ye the scattering coefficients of the junction, and
E
the voltage reflection ‘coefficients of the generator, detector, and load are repre--

sented by FG’ TD’ and FL respectively. The term FZi denotes the reflection coef-
ficient corresponding to the internal impedance of the equivalent generator con-
nected directly to the load.

In impedance measuring systems such as the slotted line, it is approximately

true that |K] = 1 and I,; = 0. For these systems,

3 (o)
fo f =ciy+ fr | e K7L, (5.60)

and as the phase wL of TL varies,

’b3|max - L !PL!

= 0 the VSWR. (5.61)

1 -

lbszmin
b. Tuning for Squared VSWR Respomse
It is possible to construct a "lossless" junction for which |K| = 1 and
{PZil = 1. This can yield a squared VSWR response; for as the phase of T, varies,

Balpax [T+ 1T 0> :
T T = pf. (5.62)

3]min

®Por background material, see Macpherson and Kerns (1956) and section 3.15i.
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.s pecessary to tune the junction in order to obtain the correct phase relation-
It 1

p between K and Ty, This response is not only a curiosity, but may find

shi

plications in measuring techmniques.
ap

c. Tuning for Magnified Response
of more promise is the class of junctions for which [K| >> 1, I,; = 0. Inspection

of eqs. (5.58) and (5.59) reveals that |K| may be approximated closely by [832/831‘,

the directivity ratio of a directional coupler.

It is well known (Barnett, 1953) that the effective directivity of a given
directional coupler may be increased (or decreased) by adjustment of a tuner connected
to the coupler output. By this means, one can adjust |K| to any desired value. Then

another tuner connected to the coupler input may be adjusted to make T = 0., This

21
yields a response similar to that of eq. (5.61) except that I; is multiplied by K.
since |K| may be greater than unity, this can be called a magnified response.

One technique for impedance measurement consists of connecting the unknown

(ry, = FU), tuning for by = 0, (KTy = -1), then tuning for I,; = 0. If the unknown

is removed and a standard (FL = FS) is connected, the response is
1

byl = C{l ;

T

s
i (5.63)
T

U

1f a variable standard were available, one could adjust it until b3 = 0, then

Iy = Ig. If only fixed standards are available, the following procedure may be used
to obtain the magiitude of I’U.
(-Sq1Tg) S5 Sy3Tp
52176 S22 S25Tp
ST S (1-S,.T.)
31°G 32 33°D
FZi = . (3.160)
(I-S19Tg) 8130
Ss10g (1-S35Tp)

If one varies the phase of Tg (a line stretcher, not necessarily of the constant

impedance type, may be used), the ratio of maximum to minimum response is

lb3 max] - I|FUI ’ “ﬁll (5.64)
o5 ial  11Tgl - 17l
This type of response is very sensitive to small differences in ITUI and |Tg|. One

ca : . . .
0 choose a suitable half-round inductive obstacle impedance standard so that ITSI

is . .
tlose to lFUI. (It is interesting to note that the attenuation of a short section
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of waveguide connected to an impedance standard could be determined by this technique.)
If a short circuit is used as the standard ITSI = 1, the ratio very nearly equals the
VSWR of the unknown. Variations of these techniques based upon eq. (5.64) are

possible.

d. Tuning for Infinite Directivity
It is especially interesting to consider the response when the tuners are adjusted

for conditions T e 0, and |K| = » (or S = 0). Equation (5.58) becomes

2 31

b:S,1S<,T
b = 6°21°32'L (5.65)

3 El
(A - ST (- SgaTy)

or

|b3l = lPLI -
With this type of response it is not necessary to vary the phase of FL, but
mercly to obscrve |b3| when once altcrnatcly connccts the unknown and the standard to

the output. In this case

. (5.66)

Any standard of known reflection coefficient lrsl, such as the ones previously
mentioned (except rs = 0), may be used. If a short circuit is used, the measuring

system can easily be arranged so that return loss

{20 logy, T%gii (5.67)
u

is measured directly.

e. Analysis of Errors

The basic form of the reflectometer is shown in figure 5-24.
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DETECTOR

1 I STANDARD
b3 Fd WAVEGUIDE
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jriny oy —
1 1 La—
TY TX :
—l
b= a_ - b,T Toy r,

Figure 5-24. Basic form of the reflectometer.

A mathematical treatment shows (assuming linearity) that the response will in general
be of the farm:

AT, + B
Ibg| = . (5.68)

CI‘2 + D
It is evident that the desired response will be realized if B = C = 0. Then

A
|b3l = 5 FZ . (5.69)

The sources of error, in determining IFU! by the methods to be discussed in this
section include: a) incorrect measurement of r, and uncertainty in value of lrsl,
and b) improper adjustment of the tuners, such that B and C do not vanish.

The error due to a) may be determined by inspection. If the equation for |FU|
is written in the form:

b, |
30 - rgr, (5.70)

gl = 175l —
Ibslg

it is evident that the fractional error in ]TU] will equal the sum of the fractional
errors in |Ig| and r if the latter are small.

With regard to the second item bh) it is assumed that R and C have heen reduced
to the point where the variations in the expression

JAr, + B|
|bg] = ——r (5.71)
lcr, + D|

are due mainly to variations either in the numerator or the denominator as the loads

of small |T and large VSWR are employed respectively.

o
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A first order correction to eq. (5.70) may be written as follows:

[b.] Ie - T
: - 3'y B 'S U C .
el =1t g TR T o Us T (5.72)
318 S'U
The ratios |B/A| and |C/D| may be determined from the expressions:
K, = 20 log |1 + 2|2
1 g (5.73)
AT
2
and
K, = 20 logil + 2 ¢
2 g . (5.74)

\
where Kl and K2 are the ratios in decibels of the maximum to minimum outputs with

the sliding loads of small]FQI and large VSWR respectively, |I',] is the reflection

o

coefficient of the load of small VSWR, and a reflection coefficient of unity has
been assumed for the load of large VSWR.

Except for the presence of the factor T these equations for K; and K, are of

IQ',
the same form, and values for |B/A| and [C/D| may be obtained from figure 5-25 where

the value of |C/D| is taken from the line |T 1. It will be noted that the evalua-

ol =

tion of the right hand side of eq. (5.72) presupposes a knowledge of FU but for the

present purpose of assigning a limit of error, an estimated (approximate) value is

adequate.

1072 =TT T /// T TTTTT
1073 =
HE
A e
OR =
L]
D -
107
10-5 MERIEY S
1073 1072 107! 10

K] OR K2 (DECIBELS)

Figure 5-25. Graph for the determination of ]B/A[ and IC/DI'
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As an example, if a sliding load of VSWR = 1.005 is employed in the first tuning
operation, and the variation in output is reduced to 1 dB, |B/A| will have a value of
approximately 1.6 x 10°%. If the variation in the second step with the sliding short
;s reduced to 0.02 dB, the value for ]C/D| will be approximately 1.Z x 10“3.
‘Assuming that the unknown load has a value [Ty = 0.2, (p = 1.5), ITgl = 1.000 (cor-

responding to a short-circuit) and assuming the terms in the right hand factor of

eq. (5.72) combine in the worst phase, values of 6 and 1.2 are obtained for

TeTy

and for iTs - FU{ respectively, for a total error of

4 3 3

£ (1.6 x 107" x 6+ 1.2 x 10 ° x 1.2) =~ 2.4 x 1077, or # 0.24 percent.

5.6. Hybrid Reflectometer

a. Introduction

The development and analysis of tuned reflectometers as previously mentioned
led to improved accuracy in fhe measurement of VSWR and magnitude of reflection
coefficient. In the following discussion, which 1s a revised version of Beatty
and Anson (1962), two additional developments are described.

First, it is shown in figure 5-26 how one can measure both phase and magnitude
of reflection coefficient with a tuned reflectometer. Second, the hybrid reflectometer
principle is introduced and illustrated. A hybrid tuned reflectometer is one in
which the source, detector, tuners, isolators, and directional coupler are components
of a convenient (say rectangular) waveguide system, but the output waveguide, sliiding
loads, and unknown are components of a different (say coaxial or stripline) waveguide
system.

Such an arrangement has obvious advantages which are illustrated by the fol-
lowing description of a rectangular-coaxial waveguide hybrid tuned reflectometer
arrangement which was tested at 4 GHz.

In applications to rectangular waveguide systems an accuracy of 0.1% in VSWR was
obtained in measuring moderale and small reflection coefficients. It is difficult
to obtain corresponding accuracy in coaxial systems, especially those in which the

diameters are small.



In the work to be described an accuracy of 1.5% in |T| for |Iy] > 0.2 is obtained
for the small-diameter coaxial line (internal diameter of outer conductor, 0.276 in;
external diameter of inner conductor, 0.120 in) normally associated with the type-N
connector.

In order to take advantage of the general superiority of rectangular-waveguide
components over coaxial components, a novel hybrid arrangement was employed. Modi-
fications of the measurement techniques are described which overcome difficulties

inherent in the coaxial structure.

b. Basic Theory
The necessary theory has already been given in this monograph. It is well to
recall that the output of a correctly tuned reflectometer is ideally

by = CT (5.65)

where b3 is the amplitude of the wave incident upon the detector, C is a constant and
T is the reflection coefficient of the load.

One normally makes a measurement by alternately connecting standard and unknown
loads having reflection coefficients Ps and FU, respectively, to the reflectometer
and (by means of standard phase-shifters and attenuators) measuring the corresponding
change in bS' This is often obtained by noting the attenuation and phase-shift
changes required to maintain b3 constant. Often phase information is not required
and one needs to measure only the attenuation Aa required to return the detector
output to the refereﬂce level. One can then obtain ]FU| from the relationship

T
Aa = 20 1og10 —i. (5.75)
Ty

It is also well to recall that one adjusts the auxiliary tuners so that cyclical
variations in the detector output |b3l (which occur when sliding the loads in the
measurement arm of the reflectometer) are minimized. In adjusting the tuner on the
1oad arm of the directional coupler, one slides a load having a small VSWR, say 1.05,
and in adjusting the other tuner, one slides a short-circuiting piston. The accuracy

of the measurement to be made depends in part on how well these adjustments are made.
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c. Experimental Equipment

(1) General
In general, the arrangement of equipment is as shown in figure 5-26. The

standard phase-shifter and the reflectometer may be of the same form, and the tuning

DETECTOR
CALIBRATED J{
PHASE
SHIFTER
|
A 1 = STANDARD
! 1
sionaL | <K CALIBRATED | \Y% L
SOURCE VARIABLE I ]
ATTENOKTOR | | 1
" TONED REFLECTOMETER. . I UNKNOWN
TUNED REFLECTOMETER :—

Figure 5-26, Simplified arrangement of apparatus,

procedure for each would then be the same. The arrangement shown permits measurements
to be made of phase as well as magnitude of the voltage reflection coefficient. How-
ever, in order to illustrate the hybrid system, the phase-shifter was omitted and only
VSWR data were obtained.

A hybrid arrangement was used in which all the equipment consisted of rectangular
waveguide components with the exception of the measurement arm of the reflectometer
and the loads, which were in small-diameter coaxial line. This was dome in order to
take advantage of the greater availability of excellent components in rectangular
waveguide. It was also found that the mechanical stability and freedom from leakage
Wwere greater than with coaxial systems. This arrangement permits changes in the
diameter of the coaxial line, as desired, merely by changing the waveguide/coaxial

adaptor.
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The discontinuity in going from rectangular waveguide to coaxial line caused no
difficulty since its reflection is tuned out in the normal adjustment of the tuners.
Commercially available WR187 (3.95-5.85 GHz) rectangular-waveguide components
were used except for the tuners, which were specially designed and constructed. ‘In
addition to the usual stubs located in the center of the broad top wall, the tuners
had stubs for fine adjustment located in the center of the narrow side wall.
The coaxial line was made from special phosphor-bronze tubing with tolerances
of = 0.0005 inch on the diameters.
Rods, clamps, and an H-beam were used to increase mechanical rigidity, and forritc

isolators were used to minimize undesirable effects of impedance changes.

(2) Terminating Arrangements

Errors caused by connector discontinuities and losses werec minimized by modifying
the terminating arrangements as shown in figure 5-27. A joint in the center conductor
at the plane of connection was eliminated by special design of the output terminal,
the adaptors for connecting the unknown load, and the working standard of reflection,
shown in figures 5-27(a), (b) and (c) respectively. Another adaptor, not shown,

permitted connection of loads having male type-N connectors.

158



COAXIAL LINE OUTPUT OF REFLECTOMETER

lTERMINAL SURFACE FOR ARM 2

I il
e

= i
77

(a) OUTER END OF OUTPUT ARM OF REFLECTOMETER

(b) ARRANGEMENT FOR CONNECTION OF UNKNOWN LOAD

T
i «’/‘/ﬁ;*/§ \ \ Q ‘
%‘ ) X %\
(DU VAR

(c) STANDARD TERMINATION CONNECTED TO OUTPUT ARM

—

Figure 5-27. Terminating arrangements for coaxial-line output of
reflectometer,

The working standard of reflection consisted of a A/4 short-circuit having
fingers only on the inner conductor. The current flow at its contacts with the line
terminal surfaces was thereby minimized. This working standard was calibrated against

a similar but more refined standard described later.

159



(3) Standard Rcflcctions for (Airdjiclcctric) Coaxial Line

Although it was not convenient to use as a reference in the measurement of unknown
reflection coefficients, the one-piece A/4 short-circuit as shown in figure 5-28 was

used to calibrate the working standard.

ONE-PIECE
2/4 SHORT-CIRCUIT
REFERENCE STANDARD

(a)

A/4 SHORT-CIRCUIT
WORKING STANDARD

(b)

Figure 5-28. Arrangement for comparison of A/ 4 short-circuited sections
of coaxial line.

(a) One-piece A/4 short-circuit reference standard.
(b) A4 short-circuit working standard.

The reflection coefficient [Fsl of such a short-circuit can be determined to

high accuracy from

2 602
Irgl =1--Z_]?.13{1+__[1+%}}, (5.5)
0

or with moderate accuracy from the graph of figure 5-15. For greatest accuracy the

conductivity is obtained from an attenuation measurement on a coaxial-line section

made of the same material used in the one-piece A/4 short-circuit.
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(4) Sliding Loads

Unless suitable sliding loads are employed, one cannot proceed far enough in the
adjustment of the auxiliary tuners, so that eq. (5.65) applies. Hence the accuracy of
measurement depends 1argeiy upon the suitability of these components. Their reflection
coefficients should not vary appreciably as they are slid or rotated in the coaxial
line. Some variation is tolerable provided that one can still recognize when the
tuners have received adequate adjustments.

Designs for suitable sliding-short-circuits are shown in figure 5-29 and for

sliding absorbing terminations in figure 5-30.

DESIGNS FOR SLIDING
SHORT-CIRCUITING TERMINATIONS

PLASTIC
: PUSH-TUBE

A
V

s

(a) STAGGERED QUARTER WAVELENGTH CONTACTING TYPE

PLASTIC METAL PLUNGER
PUSH-TUBE :

(b) QUARTER WAVELENGTH CONTACTING TYPE

PLASTIC
PUSH-TUBE S METAL

@ TN N NN I NIl NIsrIey -
A - — — — - -
v
e T T v d
/ LLLL L L1

DISSIPATIVE MATERIAL AN

3/4"

(c) A NON-CONTACTING TYPE

Figure 5-29. Designs for sliding short-circuits.
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DESIGNS FOR SLIDING, TAPERED, ABSORBING TERMINATIONS

PUSH-TUBE——\ /——DISSIPATI\/E MATERIAL
= NN ANARICANANARENANANS NNANARRNAN S e
i _ _ _ = — | _ _
e v e |
i
3 —= 3ll

(a) TAPERED SLIDING TERMINATION

~—PUSH-TUBE
- -
BRASSL

(b) SHORTENED ABSORBING TERMINATION

D ,
< !‘SSH‘:’A.T!VE MATERIAL

Ay I - N

i\

Figurc 5-30. Designs for low-reflection terminalious.

d. System Performance and Applications

Various tests were made at 4 GHz to evaluate both overall performance and that
of individual components. The results were as follows.

The magnitude [Sll}_of the reflection coefficient from a joint in the outer
conductor was determined to be approximately 0.0025, using a reflectometer technique
(Beatty et al., 1960). If no correction is made for this reflection, it can contri-
bute 1.25% to the error in measuring a reflection coefficient of |PU| =0.2.

The performance of the sliding loads was obtained as shown in figure 5-31.

The conductivity of the leaded copper used in making the one-piece A/4 short-
circuit was Jdetermined to

IS TS N N IR
1iCn tine caicuiratéa 1TC

TOm W

coefficient was 0.9988. Comparison of the working standard of reflection with this

one gave its value as IPsl = 0.9931.
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The attenuation of the uniform section of coaxial line was determined as 0.17 dB/ft.

The reflection from a joint in the centre conductor alome (its effect was avoided in

the method used) corresponded to lslll = 0.01.
F B— _ >
0-8f
0-6
0-4f _
0.2 Z \—“SHORT“ DISPLACET
- "SHORT" ROTATED 360° LONGITUDINALLY
0
(a)
——
0-sfF
0-6
0-4
0-2 . PLUNGER DISPLACED
- PLUNGER ROTATED 360 LONGITUDINALLY
0
(b)

Figure 5-31. Performance of sliding loads.

(a) short-circuit.
(b) absorbing plunger.
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e. Results and Discussion of Errors
The VSWR's of a number of commercially available coaxial terminations were measured

in order to demonstrate the overall performance. The results are shown in figure 5-32

and are generally within expected limits.

TERMINAL TERMINATION |RETURN LOSS|MAXIMUM| MAGNITUDE MANUFACTURERS
END OF  |MANUFACTURED| IN DECIBELS (DEVIATION OF VSWR SPECIFICATION
REFLECTOMETER BY: AVERAGE OF 10| FROM |REFLECTION VSWR AT
MEASUREMENTS| AVERAGE COCITICIENT 4 GHz
(@) COMPANY ‘A" 28.2db 000db | 00389 |1.078 <105
(b) COMPANY A’ 42 0.35 0.0079 1016 <105
(b) COMPANY "B 922 0.02 0346 2058| NOMINAL 2.0
(@) COMPANY "C" 20.1 0I5 0.0989 1220 | <1.20 at 3 GHz
(a) COMPANY 'D" 172 0.05 0.1380 1320| <120 from
7-10 GHz
TEFLON TEFLON 0.360"
TQ%“
V/ 2
‘s/
L 11 ( ,
Z == -
V4
—i~—0028 0.028" »&:
272" —> |— 0.272"
Fig.(a) 0.16" <

Figure 5-32. Results of measurements.

164



0.1 = T T TT7TIT T T T 17177 T
- dit] -.o.115 L =
0.05 Tr] .
- Ly = =20 TogyqlT| -
0.0z NOTE: ARROWS POINT TO PRECISION i
w OF READING THE DIAL OF TYPICAL
2, ROTARY VANE ATTENUATORS
=EZ 0 0.01F —
= = ! =
[N &7 - ‘ —
=i 0.005F ! ]
_w  0.0051 20-50dB .
— O
Q L —
@ .
o=
=3 0.002f -
Lt b=
oo !
22 0001k A__10-20d8 |
ol P —
— O - -—
- - 1
<& 0.0005F 1-10dB 7
= - ]
[ ¥
0.0002 ]
0.0001 1 ]t 1 ted ! | v b1l | L1 11ttt
0.001 | . 0.005 0.02 0.05 0.1 0.2 0.5 1

0.002 0.01
ERROR IN RETURN LOSS-DECIBELS

Figure 5-33. Attenuation error.

The principle sources of error which have an appreciable effect, together with
their maximum contribution to the overall error in measuring !FUI = 0.2, are as
follows:
(a) Uncorrected reflection coefficient of the joint in the outer conductors:
1.25%.

(b) Error in determining [Tg|: 0.1% or léss.

(¢) Error in measuring Aa: 0.3% or less, provided that Aa is less than 20 dB
(see fig. 5-33).

(d) Error in adjusting the auxiliary tuners: 0.5% or less, provided that [PU|

is less than 0.2,

The overall r.m.s. error is calculated as 1.4%. Thus an estimate of 1.5% is

conservative for [Tyl = 0.2. For [Tyl less than 0.2, the error would be higher.
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f. Conclusions

The results of this investigation of the application of improved reflectometer
techniques to the. measurement of VSWR in coaxial systems indicates that an accuracy of
1.5% or better is immediately possible. This accuracy can be obtained over a limited
but useful range of |PUI. It is felt that techniques can readily be devised to extend
the range without serious loss of accuracy. For example, one needs to reduce the
reflection from the joint in the outer conductor, and to make a correction for its
effect. Increased accuracy can be expected with the refinement of components such
as the sliding loads. Also one would expect less difficulty in working with coaxial
line of larger diameters.

The hybrid principle works well in this example, and would be expected to work

well with other combinations of different waveguide components.
5.7. Connector Reflections and Losses

a. Introduction

A knowledge of the reflections and losses of waveguide joints or connectors is
important in evaluating certain errors occurring in nearly all types of microwave
measurements. In some cases, these errors are the limiting ones, and further
improvement in the state of the art depends upon improvements in joints or connectors.
Sensitive and accurate techniques to measure the characteristics of joints and
connectors are vital to such an improvement.

The improvement and refinement of microwave reflectometer techniques has led to
sensitive means for determining the small losses and reflections normally associated
with good waveguide joints and connectors.

In the following, based upon Beatty, et al. (1960), we describe and discuss
tuned reflectometer techniques which provide a powerful tool for the’investigation

of the properties of waveguide joints or connectors.

b. Preliminary Considerations
As shown in figure 5-34, a waveguide joint or connector may be represented by a
2-arm waveguide junction characterized by four scattering coefficients, Sll’ SlZ’
821, and 822.
the junction. For example, if nonreciprocal behavior is excluded and YL = Yy

One seldom needs to know all four in order to predict the behavior of
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.1 o2t Lo 41252 27,8
Iy = Tye 701, L= 5+ I, = Tre °72

d_

Figure 5-34. 2-arm waveguide junction representation of
waveguide joint.

ZOl = ZOZ’ then S12 = SZl’ and only three are needed. If, in addition, the junction

is symmetrical, S11 = 522, and only two coefficients are required. If the junction

is lossless or nearly so, then for practical purposes |S;,| = [S,;| and [S;;] = [S,,].
It is sufficient for many purposes to determine only the VSWR corresponding to
{S41| or [S,,| and/or the efficiency n (for emergy flowing into arm 1 and out at
arm 2,
[S511%
Ny " 21 — (5.76)
1 - |sn]
and for the reverse direction,
[S1,12
Ny, = —i2 ), (5.77)
LT
22

of a 2-arm junction terminated in a nonreflecting load. In practice, the direction
of energy flow will make little difference in the efficiency of a low-loss connector
(even if it is not physically symmetrical), for the reasons mentioned above.

Similarly, the VSWR will be essentially independent of the direction of energy flow.
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OUTPUT LEVEL vs POSITION

— 10 OF
OUTPUT SLIDING TERMINATION
INDICATOR
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ISOLATOR~_ | |
N3 [/~ DRECTIONAL

|
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|

I ﬁ/’f\(:;//f}_
B |

| I

| | UNIFORM
| ,///////X®MNEGWDE
|

COUPLER
R Y WMRX|$WWAISRWNB
_ L AREIE &E%'Z i, 4
\“T0 SOURCF SLIDING TERMINATION
oF HAVING SMALL REFLECTION

MICROWAVE ENERGY
WAVEGUIDE JOINT OR CONNECTOR
UNDER INVESTIGATION

Figure 5-35. Reflectometer arrangement for measuring VSWR of
waveguide joint,
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OUTPUT LEVEL vs POSITION
— 10 OF
OUTPUT SHORT CIRCUIT

DETECTOR INDICATOR |

UNIFORM
WAVEGUIDE

-

ISOLATOR
N3 [ DRECTIONAL

F COUPLER |
SECTION A{ SECTION B
|

TUNER Y TUNER X
b N g le :

s\

\ SHORT—CIRCUITING/
TO SO’E_JRCE PLUNGER
0

MICROWAVE ENERGY

o e —— — G — —— e, S S i .

WAVEGUIDE JOINT OR CONNECTOR
UNDER INVESTIGATION

Figure 5-36. Reflectometer arrangement for measuring efficiency of
waveguide joint.

c. Brief Description ol MeiLhod

The measurement techniques used to obtain the VSWR and efficiency are illustrated
in figures 5-35 and 5-36, respectively. In both cases, one uses a single directional
coupler reflectometer employing two auxiliary tuners, X and Y, which are adjusted in
turn in the following way. Tuner X is first adjusted so that the cyclical variations
in the sidearm (arm 3) output as one slides a low-reflection termination in waveguide
section A (fig. 5-35) are essentially eliminated. Then tuner Y is adjusted to achieve
the same condition, as one slides a highly reflecting termination in waveguide
section A (fig. 5-36).

The joint or connector under investigation is between the identical waveguide
sections A and B. It is intuitively evident that if the joint or connector were

perfect (847 = S = 0, and ISlZ' = [Sle - 1), there would be no cyclical variations

22
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in the sidearm output as one slid either termination from waveguide section A into
section B. However, if the joint or connector were not perfect, it seems reasonable
to expect that the adjustments made with termination sliding in section A would not
hold when these terminations were transferred to section B.

This is actually the case, and the VSWR and efficiency of the joint can be
obtained from the observed data in such an experiment. The presence of very small
reflections is sensitively determined by the arrangement of figure 5-35 and the

presence of very small losses by the arrangement of figure 5-36.

d. Review of Reflectometer Techniques
In order to interpret the above experiments and obtain quantitative results,
wo briefly review some reflectometer theory.
The amplitude b3 of the wave emerging from the sidearm (arm 3 in figures 5-35
and 5-36) is related to the reflection coefficient Iy by eq. (3.162), or
T+ T
1 -

3 G (5.78)

E]
F2iTa
where bG is the component of the incident wave amplitude furnished by the generator,

K is a function of the scattering coefficients of the reflectometer, T and k are

2i
also functions of these scattering coefficients and the reflection coefficients of
the generator and detector, and finally Ty is the reflection coefficient terminating
arm 2 of the reflectometer. The terminal plane of arm 2 is located in waveguide
section A and may have any arbitrary position sufficiently removed from the joints
so as to avoid higher modes. The term Pzi is the reflection coefficient of the
equivalent generator at this reference plane, whiie K is practically equal to the
directivity ratio of the reflectometer. ’

It is possible to adjust tuners X and Y to make both 1/K and Lo vanish. Under
these conditions eq. (5.78) becomes

b3 =cTy, (5.79)

where ¢ = kbs;. This factor will remain constant if the generator is stable and well
isolated, the detector impedance terminating arm 3 is constant, and the tuner adjust-
ments are stable. The detector output power Py is proportional to Ib51% or

Py o= p|T,|%. (5.80)
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The constant of proportionality can be determined if a reflection standard, such as
a quarter wavelength short circuit, is comnected to a waveguide section A. However,
it can be eliminated from consideration by measuring only power ratios in which it

cancels out.

e. VSWR Determination
The cyclical variations obtained as one slides the low-reflection termination in
waveguide section B (fig. 5-35) occur as the reflection from the termination goes in
and out of phase with the reflection from the joint. Assuming that the reflectometer
has been adjusted so that eq. (5.79) applies, the behavior of FA is of interest. As
indicated in figure 5-34, it may be written in the form of eq. (3.10),

S,,8,,T

12721°L
Ty =831 7 T - s .1 (5.81)
222" L

whete the Sm n

are the scattering coefficients of the 2-arm junction representing
, ;

the waveguide joint and short sections of waveguide on either side of the joint.

Equation (5.81) may in practice be simplified to

T = Spq + Tpe Y2tz (5.82)

A 11
since one uses a termination with small |T|(|T]| <v0.005) and the loss and reflection
of the joint are small. Excluding nonreciprocal behavior of the joint, these con-
siderations lead to the conditiomns |522TL] << 1, and |312821| = 1, which are necessary
for the above simplification of eq. (5.81).

An illustration of eq. (5.82), neglecting attenuation of the waveguide, is given
by the diagram of figure 5-37. The upper diagrams show the circular loci of T, as PT

varies in phase, while the lower graphs show the corresponding variations in the

output level of the sidearm. In each case, it 1s seen that
lbglmax = ICI(Islll * eri)’ (5.83)

where ¢ is the same as in eq. (5.79}.
The determination of |Slll proceeds as follows. Let |b3|SC = |c| represent the
output level of arm 3, when a low-loss circuit torminatcs waveguide section A, and

jcT represent the corresponding output level, when the short-circuit

sly = 7l
is removed and the sliding termination inserted in waveguide section A. First ITT|

let |b

may be determined by measuring the ratio of IbSIT to ]b3]SC with a calibrated variable
attenuator, maintaining the detector output as a fixed reference level so as to

make unnecessary any knowledge of the detector law. Second, the quantity ISlll + IFT]
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11| is

determined by subtraction. There are many refinements and variations of this basic

is similarly determined from the ratio of |b3| to Ibslsc' Finally, |S

max

technique, some of which are discussed later.

a
i

Figure 5-37. Reflection coefficient diagrams and detector response
curves arising from eq (5. 82).
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f. Efficiency Determination
In the 2-arm junction representation of a waveguide joint or connector, it is
necessary to select terminal surfaces on either side of the joint to avoid appreciable

higher modes at these surfaces. The length . of waveguide between the two terminal

T

surfaces will introduce some wall loss or attenuation in addition to the loss in the

joint. The measured efficiency may be written
n = nanys, (5.84)

where n, = e 22T,

the efficiency of a section of waveguide of length Ly having an
attenuation constant o, and ut is the efficiency of the joint alone. (This separation
of the effect of losses is not rigorous, but should hold closely in practice.)

The determination of n follows from previous work!?® in which one measures the
radius of the circular locus of the input reflection coefficient as one slides a
short circuit in the output waveguide. The situation may be represented by figure

5.34, in which I, now denotes the reflection coefficient of the sliding short circuit.

T
In a uniform waveguide section having finite attenuation, the locus of Ty is a
logarithmic spiral converging toward the origin. However, this is transformed by
the 2-arm junction, and the corresponding locus of Fl is, in general, a distorted
logarithmic spiral converging toward Sll' It is distorted because the spiral 1/I‘L
is displaced or translated an amount S50 before being inverted. The output level
|b3| of thc.sidcarm of the roefloctomoter in this general case exhibits variations
as shown in figure 5.38. Analysis of the data in this case is not covered here.
However, recent papers by Almassy (1971) and Engen (1972) are pertinent.
Fortunately, in many cases the reflection coefficient 322 is small and has
negligible effect in distorting the spiral locus of FA‘ In this event, one obtains
data similar to that sfiown in figure 5-39. On each side of the transition length

Ly it is appropriate to consider the waveguide lossless and apply the theory developed

under this assumption. This theory is briefly as follows.

'%Sece section 6.7, Cullen (1949) and Beatty (1950).
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|b|

POSITION OF SHORT-CIRCUIT

Figure 5-38. Detector output vs position of sliding short when reflection from
joint is moderately large.

It was shown in section 3.13b, eq. (3.107), that the radius of the FA—circle
as the phase of FT varies is
185,8,, 1]
R = 12721 1! (5.85)
21 s,
22°T

The efficiency of a 2-arm junction with energy flowing into arm 2 and with arm 1

terminated in a nonreflecting load is

184,12
12
Ny = . (5.77)
1 - |Szz|
It is evident that to the extent that 1 - ISZZI2 equals 1 - ISZZPTIZ, and
18158511 = IS;,1%, then Ry = anIPTI. This approximation will be quite good if a low-

loss short circuit is used. If the connector has low loss, it will very nearly be

true that [Slzl = llel’ even if nonreciprocal behavior were permitted.
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b [b3lpn

POSITION OF SHORT-CIRCUIT

Figure 5-39. Detector output vs position of sliding short when reflection
from joint is small.,
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SHORT - CIRCUIT ~ SLIDING IN :

WG WG
SECTION A SECTION B

[bs]

lb3l MAX

J ]

I POSITION OF SHORT-CIRCUIT

Isc

|b3IA = 'C Pscl

Figure 5-40. Reflection coefficient diagrams and detector response curves for a
sliding short in lossless waveguide.

Referring to figure 5-40, it is apparent that

1 |b3|max * Ib3lmin n“‘scl
5 = =N, (5.86)
LTS ITgc!

since n|T | is the radius of the Iy-circle and the constant |c| cancels. It is
noted that |T.| has been replaced by ITe.l-

It is convenient to use instrumentation developed to measure power differences
directly, when ubserving the changes in the sidearm output as one slides the short-
circuit. 1In order to obtain data as shown in figure 5-39, it would be necessary
to plot the square root of the observed relative power. However, it is somewhat

easier to analyze the data as obtained and take square roots of only the three

points needed in ‘the calculation of efficiency.

176



The attenuation of the waveguide sections is obtained from the slope of the

T in figure 5-39. If P1 and P2 are the side arm

powers corresponding to two positions of the short circuit spaced a distance %, the

square of the curve to the left of ¢

asttenuation constant o may be calculated from the expression

3

e-4u£ _ 2

T T (5-87)
P1

where P2 is smaller than Pl'

g. Supplemental Techniques in VSWR Determination

In the technique described for measuring the VSWR corresponding to | of the

S11
2-arm junction representing the waveguide joint or connector, it was assumed that
|1/K] was much smaller than |S,,|. When dealing with very small reflections, the
reduction of |1/K| to even smaller values may become difficult, and a number of
supplemental techniques have been developed for the solution to this problem.

The behavior of the detector output as one slides a termination having a small

reflection (]FT| << 1) in waveguide section B may be described by

) .
by = kbG[E +8., + [rql eIV, (5.88)

In general, the previous technique for obtaining iSlll will yield |(1/K) + Slll

instead. If |1/K] << |S “there is no difficulty, but if this is not true, we

1l
cannot determine [S;;] even if we knew {1/K|, because the phase difference between
the two terms is unknown. It then becomes important either to reduce |1/K| until 't
is much less than |Slll and to know when this is the case, or to employ a technique
in which the relative phase of 1/K and S11 can be varied so as to separate their
magnitudes.

In adjusting tuner X to reduce |1/K| to a small value, it is necessary to avoid
the possible false adjustment which could result in approximately constant output if

[1/K] >> |1 One way to do this is to begin the adjustment of tuner X with all

7l
stubs out of the waveguide, and then adjust for a detector null with the sliding
termination in an arbitrary fixed position in waveguide section A. Under this
condition, 1/K = -PT, and if the termination is then displaced for maximum detector
output, the level will be |b,| = 2]cTy|. The adjustment of tuner X is then continued
until an essentially constant output level is obtained as one slides the termination,

for which the detector level should be approximately half the above level, or 6 dB

down.
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One should know when to stop trying to improve the adjustment of tuner X so as
to avoid needless tedium. This may be done with the aid of figure 5-41, as illustrated
in the following example. Suppose that |811] approximately equals 0.00025 and that
it is considered sufficient to reduce |1/K| to one tenth of this value or 0.000025.
(The corresponding error in determining |511| by the previously described technique
would then be less than 10 percent.) If the sliding termination has a VSWR of 1.003,
the graph shows that the adjustment of tuner X can cease when the total variation of
the detector output is within 0.3 dB. This example is representative of what can be
done with commercially available components.

The supplemental techniques to be described are included as alternate ways to
reduce |1/K| or to prevent error in measuring |811[ because of finite [1/K]|.

1) The method which is potentially the most powerful in reducing |1/K| is similar
to that described above, except that in place of a sliding termination of constant

T an adjustable sliding termination (Beatty, 1957) is used. One alternately

ol
adjusts both tuner X and the termination, so that the sidearm output is reduced to a
lower and lower constant value as the termination is slid. By doing this, both |1/K]|

and |T are reduced together. It is often found that the adjustment is limited, not

7l
by the sensitivity of the detector to respond to the small reflected signal, but by

the ultimate failure of ITT[ to remain constant as the termination is slid. However,

a return loss of 100 dB has been obtained with suitable adjustable sliding terminations.
This corresponds to |[1/K| certainly less than 0.00001. It could be considerably less,
depending upon the observed variations in detector output.

Apart from the reduction of [1/K|, an adjustable sliding termination may be used
in the measurement of Islll as follows. Referring to figure 5-37, it is apparent that
the detector output will vanish if Tp = -Sll‘ This condition can be easily achieved
and recognized if an adjustable sliding termination is used. Subsequently, without
changing the adjustment, the termination is slid until the detector output is a maxi-
mum and proportional to the sum of |Sll[ and |FT[ or 2|Slll. Comparing this output
level to that obtained when the termination is removed and replaced by a short circuit
will eliminate the constant of proportipnallty and permit determination of |Slll.

2)  An auxiliary waveguide channell! arranged as in figure 5-42 permits intro-

duction of a signal to the detector of such a phase and magnitude so as to cancel the

!'The circuit is quite similar to one used in the determination of barretter mount
efficiencies by an impedance technique.
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Figure 5-41. Graph for determining II/KI from variation in detector
output as a low-reflection termination is slid in the
waveguide section A,

signal component due to finite 1/K. As is indicated by the vector diagrams, the pro-

cedure begins with the adjustment of tuner X for a detector null, whereupon 1/K = -FT.
The sliding termination is then moved to a position where the detector output is
maximum, changing the phase of I'p by 180°, so that the signal components from T and
1/K add. The switch in the auxiliary arm is now opened, introducing a signal component

"A" to the detector. The amplitude and phase of this component are adjusted using the
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Figure 5-42. Auxiliary channel technique.

phase shifter and variable attenuator to null the detector output. It is apparent
from the diagram that "A" is in phase opposition to the 1/K signal component and will
cancel it if reduced in amplitude by one half without changing its phase. This is
done by adding 6.02-dB attenuation in the auxiliary arm. The measurement of {811[
can now proceed in the manner discussed previously.

Additional tuning (not shown) could be employed to prevent possible interaction
between the two channels; however, the isolator shown in the figure should prove
adequate for this purpose. The resulting adjustment can be checked by means of the
procedure associated with figure 5-41, and it is possible that |1/K] will not be
small enough. This could easily be the case if the attenuator did not accurately

produce the 6.02-dB change required, or produced some phase shift. Further adjust-

ment of either tuner X or the phase shifter and attenuator would then be necessary
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to reduce |1/K| to the desired value. In case of difficulties in obtaining fine
adjustments of the tuner, the latter procedure is quite convenient and can provide
good resolution.

3) An extension of the previous technique in which a second auxiliary channel
is employed permits cancellation of the 1/K signal component without the use of a
calibrated attenuator. The arrangement is similar to that of figure 5-42, except for
the addition of another similar channel. Vectors representing detector signal compo-

nents from 1/K, Py and channels A and B are shown in figure 5-43, corresponding to

ADJUST TUNER FOR NULL L=t

A
SLIDE TERMINATION % TOWARD LOAD \4—~ b
|

SWITCH IN CHANNEL A, ADJUST IT FOR NULL Yk
/)
\g ,
— f
SWITCH OUT A, SLIDE TERMINATION 3 TOWARD GENERATOR I' /:——— Yk
7

B\!I
SWITCH IN CHANNEL B, ADJUST IT FOR NULL . Yx

/|
B\
SWITCH IN A AND B TO CANCEL Y%

A

Figure 5-43. Steps in a technique employing two auxiliary channels.

the steps in the procedure mentioned in the figure. Although a calibrated attenuator
is not required, it is necessary to vary the phase of PT by prescribed amounts, so that
a micrometer drive for the sliding termination is convenient.

4} The relative phase of 1/K and S11 may be varied by means of the 1line

stretcher arrangement shown in figure 5-44. Alternate manipulation of the line



stretcher and the sliding termination to obtain maximum detector output results in
alignment of the vectors representing 1/K, sll’ and Ty, as shown in figure 5-45.
The remaining steps in ‘the procedure and the corresponding vector diagrams and
pertinent equations are shown in the figure. It is apparent that the ratio of [Slll

If [Tp| is known or determined

to ITT]>equals the ratio of ]b3[ nax”

min ©© [bsl
independently, then [Slll may be calculated. In order to deal with conveniently
measured ratios, one should use a termination having a ]FTI not greatly different
from |S;,].

5) Another technique employing the same arrangement as in figure 5-~44 is as
follows. Tuner X is adjusted for minimum variations in detector output as a low-
reflection termination slides in the waveguide section in which terminal surface 2
is located. This reduces |1/K| to a small value; then, the three vectors 1/X, Si1°

and T, are lined up as described in the previous technique. One adjusts tuner Y

T

DETECTOR T0 OUTPUT INDICATOR
A

— | MOVABLE WAVEGUIDE SECTION

ISOLATOR
ﬂ\“ﬂ [ DIRECTIONAL
e COUPLER
SLIDING TERMINATION
~ \ HAVING SMALL REFLECTION=
TUNER Y

TUNER X /
__LJLgiggﬁggiu_g>:T:ti;§§§J1152&52554: [ 2 JL
1T ) " ﬁf@\{g‘i R %#]
FIXED WAVEGUIDE SECTION=

WAVEGUIDE JOINT -
OR CONNECTOR UNDER INVESTIGATION

Figure 5-44. Arrangement for varying relative phase of 1/K, Sy, and I';.
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Figure 5-45.
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Steps in a technique for determining IShll in terms of ]Fr[.

until the detector output variations are minimized as a short circuit is slid in the

waveguide section.

sum of |1/K|, |[S

11|’

The detector output level ]bsl will now be proportional to the

and |TT|.

The constant of proportionality may be eliminated,

in the usual way, by taking the ratio of this output to that obtained when the

waveguide section is terminated in a high-quality short circuit. One then determines

r and |1/K| independently by methods previously described and finally calculates
T p

Is

11|’
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h. Results

The techniques described above are applicable in principle to waveguide systems
employing waveguide of rectangular, coaxial, or any kind of cross section. However,
experimental results have been obtained in a WR90 (X-band) rectangular waveguide system
operating at a frequency of approximately 9.39 GHz.

The effects of lateral displacement upon thé reflection and efficiency of a plane
butt joint in rectangular waveguide were investigated; a few measurements were
performed on other types of joints, and the attenuation constants of some short
sections of waveguide were determined.

Figure 5-46 is a photograph of the arrangement used to obtain prescribed repeatable
lateral displacements of the waveguide at a simple butt joint. Clamps were used for
alignment and to insure repeatability, and strips of shim stock of various thicknesses
were used to obtain the prescribed displacements. The heavy brass flanges shown were
originally one piece. It was soldered in the center of a section of uniform waveguide
and the edges were machined flat and square; then it was cut so as to separate into
two sections of waveguide, each with its own flange. The mating surfaces were then
ground so as to be flat and square.

The initial alignment was checked by visual inspection.. A flashlight was used
to illuminate the interior of the waveguide, and reflections of light from any
visible edges at the joint proved to be a sensitive indication of misalignment or
mechanical imperfections, such as burred edges. In spite of care taken to obtain
good alignment, the reflection coefficient of the joint was never below 0.00015, and

in the results shown, was approximately 0.00071.
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Figure 5-46. Photograph of alignment and clamping apparatus for
waveguide joint.
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A comparison of experimental and calculated results is shown in figure 5-47.
The calculated gurve is based upon the equation shown, which differs from that given
by Kienlin and Kiirzl (1958) by a factor of two, but agrees (when corrected for the
different ratio of f to fc) with the appropriate curve given in their figure 5. The
agreement is quite good over a limited range, but it is apparent that the residual
reflection that one obtains at zero displacement prevents agreement at the low end.
It is probable that fhe approximations made in deriving the equation contribute to

the disagreement at the other end.
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Figure 5-47. Measured and calculated reflections from junction of

diaplaced wavegnide cectiona.
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Figure 5-48. Measured efficiency of junction of displaced waveguide sections.

A plot of observed data obtained in an efficiency measurement is shown in figure
5-39. The attenuation constant of the brass waveguide as determined from the slope
of the squared curve is 0.056 dB per foot. Measurements were made of the efficiency
of the same butt joint described above for the same lateral displacements and the
results are shown in figure 5-48. It is not known whether or not the results are
representative of this type of joint, since the loss would be expected to depend on
the surface finich and cleanliness of the metal at the contactin

other factors.



The results of additional measurements on commonly used types of joints are given
in table 5-3. Again the results may or may not be representative, but were obtained
with careful alignment of the waveguides and cleaning of the joint surfaces. It should
be noted that the waveguide sections united by a joint were originally a single section
of waveguide which was sawed in half. Thus, there is very little, if any, change in

the waveguide cross section at any of the joints.

Table 5-3. Reflections and losses of some joints, in WR-90 (X-band)
rectangular waveguide measured at 9. 39 GHz.

TYPE OF FLANGES USED | REFLECTION COEFFICIENT

WITH BUTT JOINT 1511 EFFICIENCY
CHOKE-COVER 0.00064 0.9996
CHOKE~COVER 0.0015 0.9993
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6. Attenuation

6.1. Introduction

In attempting to set up National standards of attenuation in the U.S.A. and to
compare these with the standards of other countries, the first concern is for a
precise definition of what is to be measured and for tight specifications of the
measurement conditions. A quantity cannot be accurately measured unless it is sharply
defined.

Unfortunately, the term "attenuation" has been defined by many people in many
ways so that there is not perfect agreement on what the term really means. Also,
the conditions under which it is to be measured have not been carefully specified.

In 6.2, the general meaning of the term is cxamined, as well as various specializocd
meanings that have been used. Although the term "attenuation" has been used in various
fields and scientific disciplines, its use in electrical and electronics engineering
is of main concern in this monograph. Various definitioms, such as those published
by the American Institute of Electrical Engineers (AIEE), the Institute of Radio
Engineers (IRE), and other are discussed and compared.

Using a simple 2-port network representation of a two-port device, equations are
given based on the various definitions. By means of the equations, quantitative
differences in various attenuation concepts are clearly shown. Examples are given
for typical cases.

It is concluded that existing definitions are in some cases contradictory, and
in all cascs imprecise. Therefore they are inadequate to form a basis for accurate
attenuation measurements. A set of definitions is proposed which is based upon
specific measurement procedures and precisely specifies thé conditions under which
the measurements are to be made. Errors in making attenuation measurements due to
not perfectly satisfying the specified conditions are discussed. The use of models
representing the attenuator or 2-port device and the measurement system is discussed
and more complicated models are proposed. Finally, the concept of representing the
behaviour of 2-port devices with terminal-invariant parameters is discussed.

Following the discussion of attenuation definitions, specific research is
described in developing methods of attenuation measurement and in analyzing errors.

For example, in 6.3, the representation of a 2-port device by an idealized linear
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2-port network having uniform lossless waveguide leads is used to analyze the
cascading of attenuators, and equations are derived for the error one can make in
adding individual attenuations to obtain the total attenuation of a cascaded pair
or group.

Similarly, in 6.4, the mismatch errors one can make in the calibration and use
of fixed and variable attenuators are analyzed. The limits of uncertainty due to
mismatch are usually determined by assuming that the phases of the interacting
reflections can have any value. However, it is known that the realizability condi-
tions on linear, passive 2-ports restrict the range over which the phases can vary
in particular cases. In 6.5, the effect of applying the realizability conditions
to the estimation of mismatch error limits is analyzed and discussed.

In most cases where particularly high accuracy in attenuation measurement is
not required, the representation of an actual Z2-port device by an idealized linear
2-port network having uniform lossless waveguide leads is satisfactory. However,
if the accuracy is to be improved in the future, more complicated models, such as
that in 6.6, will be needed.

The development of a method for measuring attenuation by measuring the radius
of a reflection coefficient circle is described in 6.7. The achievement in 1960 of
unprecedented accuracies in attenuation measurement by thé use of a very stable power
measurement system is described in 6.8.

A method for measuring very small attenuations of low-loss components, such as
short sections of waveguide and waveguide joints, was developed using a 2-channel
RF nulling technique. The method is described in 6.9 and it is shown how to avoid
errors due to losses in waveguide joints and due to changes in losses in variable
phase shifters.

Finally, in 6.10, the development of an attenuation divider circuit is
described. This circuit makes possible the production of very small accurately

known attenuations, such as 0.0001 decibel.
6.2. Definition of Attenuation

a. Introduction
The accuracy with which attenuation can be measured depends upon the limitations
of the measuring equipment and methods, the stability and other characteristics of the
devices to be measured, and ultimately upon how sharply the quantity to be measured
and the conditions of measurement have been defined and specified.
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The latter point is discussed in some detail in the following sections. A number
of existing definitions, particularly those published by the two institutes which
merged to form the IEEBE (Institute of Electrical and Electronics Engineers) are
examined and compared. A quantitative comparison is made possible by deriving equations
pased upon a simple 2-port waveguide junction model.

The terminology used in writing and talking about the attenuations of attenuators
ijs discussed, and some concurrence is noted to exist in a confused situation. How-
ever, it is recognized that the actual definitions are more important to the achieve-
ment of higher accuracy than the terminology. Rather than suggest changes in
terminology, improved definitions are proposed, which sharply define the quantity
to be measured and the measurement conditions.

Finally, possible future trends, such as the use of more complicated models

for analysis, or the use of terminal-invariant parameter definitions are discussed.

b. Broad General Meaning

The word '"attenuation'" comes from the Latin "attenuatio" which is built from

" [

the simpler words "ad" meaning '"Lo," and "tennuis,'" which means "thin.'" It
generally refers to a decrease of something, especially a gradual weakening or
drawing out. . Tt had heen used in this sense for a long time before man's use of
electricity for signaling and his invention of radio. In Webster (1806), attenuation
was defined as the act of making thin or slender. It is still used in the same
sense today, to denote a decrease, weakening, emaciation, or rarification (Crowell,
1962).
For example, the following definitions illustrate the wide use of the word.

Biological Sciences:. Used specifically of the gradual reduction
in virulence of a microorganism (Gray, 1967).

Textiles: The process of making a roving or sliver progressively smaller
by doubling and drafting (Fairchild, 1967).

Medicine: The process of preparing homeopathic medicines by repeated dilutions
(Funk and Wagnall, 196A5).

Distilling and Brewing: The clarification and thinning of saccharine worts
incident to the conversion of sugar into alcohol and carbon dioxide by fermentation

(Funk and Wagnall, 1965).
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It is seen that in each field, a restricted meaning exists which is in agreement
with the broad meaning. In the field of electrical and electronic engineering, there
are many definitions involving the words "attenuation," and "loss'" which are in
agrcement with the broad general meaning, hut are very specialized in application.

The bases for these restricted meanings are discussed next.

c. Restricted Meanings

As used in electrical and electronic engineering, the term "attenuation" is used
in the most general sense to denote a decrease of the amplitude or magnitude of
coherent or incoherent electromagnetic waves or electrical impulses without specifying
(1) what quantity shall be used to measure the decrease, (Z) whether the decrease 1s
space-dependent, time dependent,! or both, (3) the cause of the decrease, or (4) the
.conditions under which the decrease is to be measured.

However, in various restricted meanings of the term, each of the above has
been specified, sometimes in contradictory ways. For example, in the case of an
electromagnetic wave radiated by an antenna and traveling over the earth (ground
wave), the wave amplitude decreases as one goes farther from the antenna due to
(1) spreading out of the radiation -- the inverse distance effect, (2) dissipation
or conversion of some energy to heat in the earth, and (3) scattering by irregularities
or by objects in the transmission path. In general, "attenuation" denotes the
decrease of wave amplitude due to any and all of the above causes, but some defini-
tions exclude the decrease due to spreading.

For example in Michels (1961) on p. 113, one finds the following: "In the most
common usage, attenuation does not include the inverse-square decrease of intensity
of radiation with distance from the source." However, in the IRE Dictionary of
Electronics terms and symbols'" (1961), one finds on pp. 8-9 the following: 'Note:

In a diverging wave, attenuation includes the effect of divergence."

According to the cause of the attenuation or reduction, one finds different
terms. In Tweney and Hughes (1961), pp. 3, 373, there is the following: Absorption
(Radio) Reduction in the intensity of an electromagnetic wave, due to eddy currents

and dielectric losses in the ecarth. Also called attenuation. Geumetrical Atllenuation

(Radio) The reduction in field strength of an electromagnetic wave as it progresses

from the source on account of spreading out.

!A time-dependent decrease might be caused by a variable attenuator and observed
by a detector at a fixed point in space. A space-dependent decrease might be
caused by a lossy transmission path and observed by two detectors located at
different points along the path.
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The American Institute of Electrical Engineers (AIEE, 1942) published the
following definition: '"Attenuation of a Wave" -- The attenuation of a periodic
wave is the decrease in amplitude with distance in the direction of wave propagation
when the amplitude at any given place is constant in time, or the decrease in
amplitude with time at a given place."

This definition is somewhat restrictive because: 1) It mentions only periodic
waves. However, it is possible to decrease the energy of a transient or aperiodic
wave, or even electrical noise, by placing some dissipative, reflective, or scattering
objects in its path. 2) It ignores the possibility that a wave might simultaneously
be decreasing in amplitude with time as it decreases with distance in the direction
of propagation.

Consider the following three cases: 1) A detector is placed at a certain
position in a transmission path or circuit and observes a decrease with time of
the wave amplitude, 2) two detectors are placed at different points along a transmis-
sion path or in a circuit and the wave amplitudes are observed simultaneously,
giving information about the decrease of wave amplitude with distance along the
propagation path, 3) a detector is moved continuously along a wave transmission path,
and detects é decrease in wave amplitude in going away from the source. Such a
decrease could be both time and space dependent, although quite often, the source
is amplitude-stabilized to remove any time-dependence, or the amplitude is monitored
at some fixed point and corrections are made to eliminate any time-dependent
component.)

It should be clear from the above examples that it is important when using
restricted definitions of attenuation that the basis for the restrictions is clearly

understood.

d. 1RE Detfinitions
The definitions of attenuation published by the Institute of Radio Engineers
(IRE) in 1961, also appcar in thc IEEE Standard Dictionary of Elcctrical and Elcctronics
Terms (1972). For this reason, they deserve special study. It appears in IRE (1961)
on p. 8 and states: "Attenuation. General transmission term used to denote a decrease

of Signal magnitude."
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There are two appareut restrictions. First, the phrase "Signal magnitude" would
seem to exclude waves? which were not "signals.'" And second, the phrase "transmission
term" implies that the decrease takes place as a result of transmission, and thus is
space-dependent but perhaps not time-dependent.

In practice, the use of the term "signal'’ has been expanded to include any
electromagnetic wave or electrical impulse whether or not it contains any message
to communicate information. Also the phrase '"transmission term'" does not really rule
out time-dependent attenuation. Thus the apparent restrictions have largely been

ignored or circumvented.

one notes that the IRE definitiovas of terms which ilnclude the word "attenuation”
refer to space-dependent attenuations with one exception. Thus, "Current Attenuation,"
"Voltage Attenuation," "Power Attenuation," '"Attenuation (of Radio Waves)," and
"Attenuation (in a Waveguide)' are restricted to space dependent attenuation., How-
ever, '"Direct-Coupled Attenuation” (TR, Pre-TR, and Attenuator Tubes). The Insertion
Loss measured with the resonant Gaps, or their functional equivalents, short-
circuited" is a time-dependent attenuation.

On the other hand, the IRE definitions which include the word 'loss'" consistently
employ power as the observed quantity although they are divided among space-dependent
and itime-dependent atileuuaiiovns. Fur example, time-dependent losses include Bridging
Loss, Insertion Loss, Transition Loss, Reflection Loss, Return Loss, and Transformer
Loss. Among the space-dependent losses are Absorption Loss, Divergence Loss, Heat
Loss, Power Loss, Radiation Loss, Refraction Loss, and Transmission Loss.

One can conclude that the IRE recognized both space-dependent and time-dependent
attenuations and considered "Loss'" concepts as special kinds of attenuation involving
power as the observed quantity.

It is noted in some of the definitions (but not all) that attenuation or loss can
be expressed either as the amount of the decrease of a quantity (such as power), or the
ratio of the large to the small value of the quantity which is decreased. In case

the ratio is used, it is often expressed in Decibels or Nepers. On p. 38 of IRE

20n p. 132 of IRE (1961), we find "Signal. 1) the physical embodiment of a Message.
2) a) A visible, audible, or other indication used to convey information. b) The
intelligence, message, or effect to be conveyed over a communication system. c) A
Signal wave." On p. 90, we find "Message. 1) An ordered selection from an agreed
set of symbols, intended to communicate information. 2) The original modulating wave
in a communication system. Note: Definition 1) is the sense in which the term is
used in communication theory; definition 2) is the sense in which the term is often
used in engineering practice.”
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(1961) one is cautioned against confusion which may result if ratios of currents or
of voltages are expressed in Decibels. The point may be illustrated by the following
example. Consider two points in a linear circuit excited by steady-state, sinusoidal,

single-frequency electromagnetic waves. If the impedances at the two points are Z

1
and Zz, and’ the corresponding powers, voltages, and currents are respectively Pl’
Vl,-and Il, and PZ’ VZ’ and IZ’ the decibel relationships for the power, voltage,
and current ratios are the following:

P1 V|2
Rp = 10 log;, —, where P = [1]2 Rez = - ReZ, (6.1)
P, 1Z]
v, |2 Z1 2 ReZ2 Pl’
RV =10 1og10 ;~ = 10 1og10 E_ . nor . ;— , and (6.2)
2 2 ©4 2
1.]2 ReZ2 P1
RI =10 1og10 — = 10 log10 . = (6.3)
2 ReZ, P2

Note that if the impedances are equal (Zl = Zz), all three ratios expressed in
decibels are equal. In the special case where only the real parts of the impedances
are equal (ReZ1 = ReZZ), then the power and current ratios expressed in decibels are
equal and the voltage ratio gives a different number of decibels (except for Imz, =
-ImZZ). In general, if the impedances are not equal, then the three.ratios above
expressed in decibels can be different numbers.

The above example applies to the comparison of IRE definitions of Voltage
Attenuation, Current Attenuation, and Power Attenuation of Transducers, where the

input impedance of the transducer may in general be different from the impedance

of the load connected to its output port.

e. Comparisons of Definitions

In this section, comparisons will be made of various IRE definitions of
attenuation (including "loss") and of a few definitions derived from those given
by the IRE. Practically all of the IRE attenuation definitions pertain to a
"transducer" which can be represented by an ideal linear passive 2-port having
uniform, lossless waveguide leads. Equations may then be derived for the different
attenuations and quantitative comparisons are then possible. In the following,
the equations are given without derivation. The derivation follows from the
Principles given in section 3.8 and the equations use the same notation and
conventions.
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First, simple equations are given which define the attenuations in terms of
the ratios of the appropriate quantities. Then, the corresponding equations are given
in terms of the scattering coefficients Sll’ SlZ’ 821, and S22 of the two-port
model of figure 6-1 assumed to represent the transducer, the characteristic impedances

Z and Zgg of the principal modes in the waveguide leads, and the reflection

01
coefficients FG and PL of the equivalent generator and load '"'seen by'" the
transducer. Finally, simplified equations are given for the case of 201 = Z02

and FG =T, = 0, or simply TL = Q.

L
Consider first space-dependent attenuations which can be defined in terms of the
terminal variables Vys il, a), bl’ Vs iz, as, and b2 which are indicated on figure 6-1.

Note that'}or generality, the generator system is a Z01 system and the load system

is a Z.02 system.
1 2
] |
1~ 2
¥ i
Te=— Vi Iyl 2-PoRT  [Zg2 V2 —Ty
? )
!
by byea,
Figure 6-1. Model assumed to represent a two-port device.
V1
Voltage Attenuation AV = 20 Log10 ——t. (6.4)
V2
i1
Current Attenuation A, = 20 logy, |—. (6.5)
iZ
. P
Power Attenuation or _ 1! _ 1
Transmission Loss Ap = 10 Loglo(g—} = 10 Log;, ;’ (6.6)
) 2
where
By = a2 - by 12,

01

1
b, = “_‘(lbzlz - |32I2);
02
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and n is the efficiency. Note that P1 and P2 are net (transmitted or delivered) powers.

Intrinsic Attenuation?® Ay = 10 Logy, 1. (6.7)
max
(See section 3.9.)
Voltage Wave Amplitude A = 20 Lo i_ 10 Lo P11 . Zo1
Attenuation* VWA £10 b 10 P 7 ’ (6.8)
2 E2 02
where Pl denotes incident power and PE denotes emergent power.
Paz
Available Power Attenuation? Ay = 10 Log, =, (6.9)
P
A2

where PA = Available Power.
The following relationships between the available powers and the terminal

variables shown on the above figure 6-1 can be derived from inspection of section 3.6.

1 - rgryl® b
P = p where T, = — (6.10)
Al 1 L ,
(- Irglaa - I 1) ay
and’
|1 - r1,.T, |2 S,,5,,T
PAZ - Pz 221 L —, where FZi = SZZ + _lg_gl_gﬂ, (6.11)
a - IFZil )@ - lrL' ) 1 - SllTG
and
ro= 2
L b :
2

The above eqs. (6.4) through (6.9) all define an attenuation associated with the
ratio of a quantity at port 1 to the corresponding quantity at port 2. It would
also be possible to form a ratio of a quantity at port 1 to a different quantity
at port 2, but this would not be in agreement with the general definition of

attenuation.

®This is an extension of Power Attenuation to the case in which the 2-port is
terminated in a load impedance for which it has maximum efficiency Nnax®
“This is not given in the IRE Dictionary, but follows from application to waveguide
circuits of the IRE definition: Attenuation (in a Waveguide). Of a quantity
associatcd with a traveling waveguide wave, the decrease with distance in the

direction of propagation (53 IRE 2.S1).

SThis is the inverse of the IRE definition of the "Available Power Gain" (of a
linear transducer). (51 IRE 20.S2.)
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The ratio of a power at port 1 to a different kind of power at port 2 is used in
some attenuation definitions, for example in the definition of "transducer loss."
However, this is not regarded as a space-dependent attenuation unless the two
different kinds of powers can be simultaneously observed. In the case of "transducer
loss," the available power might be measured at port 1 by removing the 2-port and
connecting to the source a detector whose impedance is adjusted to conjugately
match that of the source. Once PAl has been measured, the 2-port is reconnected to
the source and P2 (the power delivered to a specified load) is méasured.

For the purpose of making comparisons, equations for the above space-dependent
attenuations are given as follows (the equation for A; is not given because it is

rather large, and does not reduce to a simple form when Z01 = Z02 and PG = FL = 0).

(1+S,,)(1-s,,T,) - S,,S,.T 148 ) )
A, = 20 Log 11 22°L 12721°L) | 4, Log 11 , (6.12)
v 10 S, (1+T) 1o]g
21 L 21
for ry = 03
Z (1-8,.)(1-S,,T,) - S,,S,.T 1-8
A 20 Log 0z , 11 22°L 12721°L + 20 Log .11 , 6.13
C 10]; S, (1-T.) 0|75 (6.13)
01 21 L 21
for TL = 0 and ZOl B ZOZ;
A |1-s,,7:1% - |(5;,5,,-57,5,,)T; + S,.]2 1 - |S;412
A, = 10 Log 0z |, 22°L 12721 117227 L 11l > 10 Log l 11I
? 101z 5, 12@-1r, %) syl
01 21 L 21
(6.14)
for PL = 0 and ZOl = ZOZ;
Ay, = 20 Log Vi A 20 Log
VWA 1017 ¢ 10 g l’ (6.15)
21 21
when FL = 0; and
- UK. S -5 .S ;
_ Zog  1178190¢l" - 108178,517811875) g + 8y51* 1 - [8,,1"
A, = 10 Log — ~ 10 Log —_—
A 1017 8,112 ([Tl ) syl
01 21 G 21
(6.16)
for FG = 0 and 201 = ZOZ'
It is significant that the above equations do not become equal when the conditions
PG = FL = 0 and ZO1 = Z02 are imposed. However, if, in addition, the transducer is

non-reflecting (S11 = 822 = 0), then they are all equal.
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The differences are due to reflection interactions, and if the reflections are
small, the differences will be small. However, in the case of highly accurate meas-
urements, even small differences may be important.

For example, if the input and output VSWR's of the 2-port® are 1.05, corresponding

to [S49] = I8,,] = 0.0244, and we assume that Tg=Tp=0and Zy; =2 then the

02°
attenuations AP and AA will be about 0.026 decibel lower than AVWA’ and AC and AV
can be about 0.4 decibel higher or lower than AVWA’ depending upon the phases of
S11 and SZZ'

These differences are significant and illustrate the importance of clearly
defining the quantity to be measured.’

Consider next the time dependent attenuations "insertion loss" (LI), "transducer
loss" (LT), and "substitution loss" (LS). The first two can be defined in terms of
the third, as will be demonstrated. 1In figure 6-2, the substitution of a final 2-port

for an initial 2-port is shown.

J
|| I'_’PL
|
' |
GENERATOR [ 7 INIT.IAL ] .
bgs Tg |_“0Yf o_popt |'L—= 02 LOAD
‘ [
! «
' |,
: -
GENERATOR 5] FINAL { -
bg> Tg I_“01f 2-port | L—=1 ©02 LOAD
[ |
| I
1 2

Figure 6-2. Model representing substitution of final 2-port for
initial 2-port in a simple system.

The defining equation for all of the three losses is:

ip
L = 10 Log,, IEE , (6.17)
1.

N J

where PL is the power absorbed by the load, and the front superscripts i and f

refer to initial and final conditions, respectively.

SVSWR's higher than 1.05 are commonly encountered, even in high-quality components.
Thus, the example given is conservative.

"These differences also verify the advisability of avoiding the use of current and
voltage attenuation concepts in situations where the impedance varies along the
transmission path.
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In the case of "substitution loss,'" there are no restrictions on the properties
of the initial 2-port. If the initial 2-port is a perfect connector pair having no
dissipative loss or leakage, no reflection, and no phase shift, then the substitution
loss equals Ly, the insertion loss. (The case where the initial connector pair is
not perfect is discussed later in section 6.6.) The insertion loss under non-reflecting

conditions (TG = T. = 0) is characteristic of the 2-port and is called the insertion

L
1oss of the 2-port, the word '"characteristic' being understood.

If the initial 2-port is a perfect transducer having no dissipative loss or
leakage and provides a conjugate match to the generator, then iPL is the available
power, and the substitution loss equals LT’ the transducer ldss.

Note that the definitions of "insertion loss' and "transducer loss'" are
equivalent to those given in the IRE Dictionary on pages 75 and 152, respectively.

In the equations to follow, it is assumed that the initial and final charac”
teristics of the generator and load are unchanged by substitution of the 2-ports.
However, in making an analysis of the errors due to these assumptions failing to
hold, the front supcrscripts i and £ would be retained on FG and T, .

L
From eqs. (3.51), (3.53), and (3.52), respectively, we have the following:

i £ £, £, £
Lg = 20 Log,, fSZI[(l © Suafed (- "S5T) - S35 6]
1 1 1 1
S0 11 = 7899 T (@ = 785,Ty) - 78157853 6]

b4

ig
= 20 Log,,|¢22
521

» if T =T = 0. »' (6.18)

.

LI = 10 Log10

?

- - - 2
Zoa 1 - ST @ - Sp,T1) = 89,8, Tely ] ]

_ 2
\Zo1 1S5, (2 - Tgrp |
. 1) . o -
= 20 Logyy| -, 4£ Tg = Ty = 0, and 2g) = Zgy. (6.19)
21

( - - - 2

) Zog 1@ - 81T (- 85,T1) - 51555 gl

Ly = 10 Logyy|—= - . : ,

Z01 IS5120 - gl @ - (11"

= 20 Logyyi—1> if Tg=1T, =0, and Zo1 = ZOZ' (6.20)
S )

21
It is seen that when the system is non—reflecting'(FG = PL = 0) and 201 = ZOZ’

the transducer loss, insertion loss, and the voltage wave amplitude attenuation (a

space-dependent attenuation) are identical. It is also noteworthy that if the
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condition T; =-0 is removed, the insertion loss and Ay according to eq. (6.15)

continue to be identical for any value of Ty .
Consider now another set of concepts which are defined by the lRE in terms of

s ivave wmacn CAR DE measweed S1MUltaneousiy. These are the transition loss LTN’

1

the reflection loss L., and the return loss Lp. These are defined with reference
to figure 6-3. It will be shown that these losses are equivalent to time-dependent

attenuations.

R

GENERATOR Z LOAD

|
[
o I
|
|

Figure 6-3. Model representing generator connected to load
by a uniform, lossless waveguide lead.

P

_ A
Loy = 10 Log,, -2, (6.21)
Py

where PA is the available power, and PN is the net power absorbed by the load.

P la|®

Lpy = 10 Logy ;l’ where P, = — the incident power. (6.22)
N 0
P |b]*

Lp = 10 LoglO ;—, where PR = Z , the reflected power. (6.23)
R o

Additional insight is obtained about the meaning of these losses when they are
expressed as time-dependent attenuations as follows. Consider the situation in

figure 6-4 where two loads are alternately connected to the same generator.
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Figure 6-4. Model representing two loads alternately
connected to the same generator.

The attennation of the reflected wave is:

iy,

ip
£ T

R
. (6.24)
R

A, = 20 Log10 = 10 Log10

R

This can be shown to be equal to the return loss Lp when two conditions are imposed
1) non—refleéting generator, and 2) perfectly reflecting initial load. Considering

section 3.6, the above equation can be written as follows:

1 - rGer ry 1
Ap = 20 Logyg\ 5= * | T 20 LoByo¥ | (6.25)
G "L L L
[*r | = 1.
L

when rG = 0 and

Initially, the incident wave is totally reflected and returned to the generator,
where it is absarbed. When a .different load is finally connected, the reflected wave
is reduced or attenuated. The return loss LR is thus equal to the attenuation of
the wave returned to a non-reflecting generator when a perfectly reflecting load is
replaced by a different load.

From the defining equation for return loss given above,

1 b2
=10 Log10 5— = 10 Log10 ;l = 20 Log10 TF—T.
R L

Thus the return loss is equal to AR for the two assumed conditiomns.

L (6.26)

R
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Next, the transition loss can be seen by inspection of its definition to be
equal to the attenuation of the net power delivered by a generator when a conjugately
matched load is replaced by a different load. This follows because a conjugately

matched load absorbs maximum power and a different load then must absorb less power.
Finally, the refloction 10SS can b€ Shown t0 be €qual <o the astcuwatiovn OF

the net power delivered by a non-reflecting generator when a non-reflecting load
is replaced by a different load. This follows because a non-reflecting load absorbs
maximum power from a non-reflecting generator and a different load must then absorb
less power.

In addition to the IRE definitions of attenuation, many others have been proposed
and used. However, it is not considered necessary or useful to discuss them in this

monograph.

f. Terminology

There has been a long-standing lack of agreement about which names are most
sultable for which attenuation concepts as well as which concepts are most useful to
characterize a device for measurement purpeses. Although a complete discussion of
this situation would be interesting, it is oaly briefly summarized in order to relate
the terminology used in this monograph to what is in common use today. Particular
attention will be given to the terminology of attenuation concepts used to charac-
terize attenuators.

Attenuating devices may be classified as tither 2-ports or multiports. In the
case of multiports, two of the ports may be sekcted as available for connecting
to a transmission system and the remaining are 10t connected to the system, but to
loads or independent circuits. The system may enerally be a complicated one
involving many paths between the source and thedetector. However, for the purpose
of defining attenuations, it is usually tacilly ssumed that there is only one path
from the source to the detector. One deals onlywith the attenuation in a single
path. Thus, attenuation measurements are basicaly concerned with 2 ports, which
nay be either fixed or variable. The attenuationwhich characterizes a variable
device is different than that which characterizesa fixed device.

In the case of non-variable devices such as gtenuator pads, space-dependent

attenuations such as AP and AVWA’ as well as time-ependent attenuations such as

LS' LI’ and LT which involve power ratios might beised to characterize the device.
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VIA® LI’ and

LT give the same simple equation in terms of the scattering coefficient 821, assuming

It has been noted that in the case of a non-reflecting system, A

the 2-port model has ideal waveguide leads. Thus, differences between these three

would be very small and would depend upon how much the actual situation differed from

the idecal model.

It has been common practice to measure the insertion loss LI in a non-reflecting
system and to call this either 1) the insertion loss of the device, or 2) the at-
tenuation of the device. It is understood that the word 'characteristic" should
precede the word "of," but for brevity, it is usually omitted. The use of either
1) or 2) is optional and has been a matter of individual preference.

In discussing mismatch errors in attenuation measurements (see 6.4b) one defines
the error as the difference between what is acfually measured (insertion loss or substi-
tution loss) and the desired quantity (attenuation or characteristic insertion loss).
In this usage, the word "attenuation'" is understood to imply a non-reflecting system
at the insertion point.

When the dcvice is an attcnuator, it is natural to speak of "“its attenuation."
However, since L; is usually measured, there is some preference for the term "its
insertion loss." It would be equally valid to measure AVWA’ which is not an insertion
loss. The term "attenuation of a 2-port device" is a more general term than "inser-
tion loss,'" and includes both AVWA and Lr

There is a class of two-port devices which cannot be simply inserted into a
system, but must be substituted for somehing already in the system. For example,
an attenuator pad having female connectos on both ends can be substituted for a
female-to-female adapter which is origimlly in-the system. In this case, the
substitution loss in a non-reflecting sstem may be used to characterize the attenuator,
providing that the characteristics of te adapter initially in the system are
complctely specificd. Otherx itqms in nis category arc decvices such as waveguide-
to-coaxial adapters and connector pair: themselves.

Although the term "insertion lossof a connector pair'" has been used, what is
usually measured is a substitution los. For example, a section of cable having the
connector pair under test in its centTr is substituted for an identical section of
cable which has no connector pair in-ts center. Since a connector pair cannot be
simply inserted into a system and reoved again, the term "insertion loss" is not so
applicable as "substitution loss of: connector pair' or the "attenuation of a con-
nector pair." Other alternatives a® available such as the relative efficiency of
a connector pair. In addition to te efficiency, one would also require the VSWR or
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return loss. The phase shift might also be important. This topic is considered
further in section 6.6.

In the case of a variable 2-port device such as a variable attenuator, two terms
are commonly used to denote its attenuation. They are 1) "its insertion loss'" and 2)
"its attenuation." The first term refers to the initial attenuation when the
variéble attenuator is set to '"zero" or is switched to the state of minimum attenuétion.
1t could be either space-dependent or time-dependent, according to how it would be
defined and measured. Usually, the time-dependent attenuation is measured and called
the insertion loss.'" The second term is used to denote the time-dependent attenuation
due to its adjustment or its switching from one position to another. Usually the
reference point is the 'zero'" setting or the minimum attenuation switching state,
but any reference may be used. For example, in a step attenuator, one may allude
to thc attcnuation bectwcen the 25 dB step and the 30 dB step. In all cases, it is
assumed that the system has been adjusted for the non-reflecting condition prior
to the measurement.

The variable attenuator may then be characterized by its insertion loss and
its attenuation versus dial setting or step position data. If the variable -attenuator
has only two states, then its insertion loss and its attenuation are all that is
required to characterize it.

If one considers a fixed pad as a special case of a variable attenuator having
only one state, then by extension, it would be characterized by its insertion loss
and its attenuation would be zero. This is one argument for the use of the term
"insertion loss" rather than "attenuation" to characterize a pad. As previously
mentioncd, there arc valid arguments for the opposite preference. It really makes
no difference which is used, as long as the concept is clearly defined.

In other words, for precision measurement applications, the terminology is not
as important as the tightness of the definition of the concept. In the next section,

an attempt is made to tighten up the definitions of insertion loss and attenuatiom.

g. Precise Definitions
Tn the following section, precise definitians af attennation will be presented.
All of the things which were mentioned in the general definition of attenuation in
section 6.2c as not being specified will be specified here. The definition will be
based upon the basic measurement method and will tightly specify the conditions of
measurement. It will be independent, as far as possible, of any idealized model,
although strangely enough, it has been found difficult to completely avoid any

idealized conditions in definitions.
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In all of the definitions, it will be assumed that the source of electrical
energy supplies a sinusoidal wave of single frequency and that we are considering
only a single mode propagating in each waveguide of the system. It is assumed that
the net power to the detector excludes any leakage (energy coming by a path other than
directly through the device in question). If the detector responds to leakage power
and it cannot be separated from the direct path energy, this represents a source
of error.

The scope of the definitions will be limited to those which involve net power
or delivered power. Only time-dependent attenuations will be defined, and only at-
tenuations due to dissipation or to reflection of energy will be considered.

The general definition of attenuation given in the first paragraph of section

6.2c is considered to be an improvement on the AIEE and IRE definitions in that it
is less restrictive. It is used as a reference in formulating the specific,
restrictive definitions to follow.

The "“insertion loss (characteristic) of an insertable, fixed 2-port device" is

defined to be in decibels, 10 times the logarithm to the base 10 of the ratio of

the initial to final net powers deliveréd to a non-reflecting detector by a non-
reflecting source initially connected directly to the detecter and finally connected
so as to feed energy only through the two-port device to the detector. (In ordef
for a device to be insertable, the connectors at its two ports must be of the same
type as the system connectors which mate at the insertion point, and be either
sexless, or of the opposite sex.)

The conditions under which the detector powers are measured are as follows:

1) The sourcc is initially connccted to thce detector by means ‘sf a connector
pair constructed so as to tightly adhere to standard specifications for such con-
nector types as are used. Each connector of the pair is attached to a uniform section
of waveguide constructed so as to adhere as closely as possible to standard dimensions
and of sufficient length to effectively eliminate any higher modes which may have been
excited by the connector pair.

2) The system is adjusted so that ideally there are no reflections looking
towards the source or towards the detector in the waveguide sections belonging to
the system. (Actually the adjustment is usually made in practice so that no reflec-
tions are observed in an auxiliary waveguide which is part of the reflection meas-
uring instrument. Thus the system will thén have reflections equal to those caused
by a connector pair plus any residual reflection of the measurement instrument.

This will represent a source of error.)
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An improved technique to adjust for no system reflections is illustated in
figure 6-5. Only the case of adjustment for no reflections looking towards the
detector is shown. One can easily deduce how to use this technique to obtain no

reflections on the generator side of the system.

SOURCE

STANDARD
CONNECTOR
TUNER PAIR TUNER
TO GENERATOR T T TO DETECTOR
i STANDARD E
WAVEGUIDE
SECTION
a) INSERTION POINT
RECEIVER
- STANDARD
CONNECTOR ADJUSTABLE
TUNER PAIR SLIDING
f T T TERMINATION
SIGNAL ] ;7
T
~== ]
L]

f STANDARD
WAVEGUIDE
SECTION

b) ARRANGEMENT TO ADJUST REFLECTOMETER TO INDICATE NON-REFLECTING
CONDITION ON SYSTEM DETECTOR SIDE OF CONNECTOR PAIR. TUNER AND
ADJUSTABLE SLIDING TERMINATION ARE ALTERNATELY ADJUSTED TO REDUCE
AND MAINTAIN OQUTPUT TO RECEIVER BELOW NOISE LEVEL AS TERMINATION
SLIDES AT LEAST HALF WAVELENGTH.

RECEIVER
STANDARD

CONNECTOR
TUNER PAIR TUNER
SpGNAL T T TO DETECTOR
-
STANDARD
——-——WAVEGUIDLC
SECTION-

¢) ARRANGEMENT TO ADJUST SYSTEM DETECTOR SIDE OF CONNECTOR PAIR FOR
NON-REFLECTING CONDITION. AFTER ADJUSTING TUNER ON SIGNAL SOURCE

SIDE OF DETECTOR AS ABOVE, ADJUST TUNER NEAR DETECTOR FOR
RECEIVER NULL.

Figure 6-5. Improved technique to adjust for no system reflections.

3) The generator wave amplitude bG and internal reflection coefficient PG,
and the detector semnsitivity or gain and reflection coefficient T;, are initially
the same as when the final relative net power is observed.
43 It is assumed that the power level is either low enough to avoid appreciable

non-linear effects, or is set at a specified level before insertion of the device.
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The "attenuation (characteristic) of an insertable, fixed 2-port device" is

synonymous with the above definition 6f the insertion loss. However, one could also
define a '"voltage wave amplitude attenuation (characteristic) of a fixed Z-port
device,™ an "intrinsic attenuation of a fixed 2-port device," or any attenuation
regarded to be characteristic of the device. Such definitions are not presently
required for precise measurement purposes, and will be left for future research.

In the case of a fixed 2-port device which is not insertable, the following

definition may be useful. The "substitution loss of a fixed 2-port device" is in

decibels, 10 times the logarithm to the base 10 of the ratio of the initial to
final net powers delivered to a non-reflecting detector by a non-reflecting source,
connected initially to feed energy only through a removable fixed value 2-port
device (having specified properties) and finally the fixed Z2-port device under con-
sideration. The conditions of measurement are the same as those listed for "the
insertion 1nss nf an insertahle fixed 2-port device," with the exceptions indicated
above.

The “attenuation (corresponding to a particular adjustment or change of state)

of a variable 2-port device'" is in decibels, 10 times the logarithm to the base 10
of the ratio of the higher to the lower net powers delivered to a non-reflecting
detector by a non-reflecting source connected so as to feed energy only through the
device, which is adjusted or switched from an initial setting or state to a final
setting or state. The conditions of measurement are the same as thoée specified
above with exceptions which are evident upon inspectioh.

The foregoing definitions are understood to apply also to any pair of ports of
a multiport device, whose other ports which are not involved in the definition, being
connected in some specified way, such as, but not necessarily, all connected to non-

reflecting loads.

h. Future Trends
One can predict future trends on the basis of certain assumptions. The
probability that they will actually occur depends in part upon the validity of the
assumptions. It seems reasonable to assume that higher accuracy will be required
in the future in attenuation measurements. This may lead to improvéments in wave-
guides, comnectors, and in attenuators themselves. If these improvements are sub-
stantial enough, then errors will be reduced. The more that errors are reduced in

this way, the less need there will be for improved analytical techniques to evaluate
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errors, as discussed in section 6.6. Also there will be less need to consider
replacing conventional insertion loss and attenuation concepts by a "terminal
invariant parameter" (Engen, 1969) such as intrinsic attenuation.

I1f, however, improvements in wafeguides, connectors, and attenuators do not
keep pace with accuracy requirements, these analytical techniques and special
concepts should prove more useful.

It is also conceivable that new methods will be developed to make more accurate
attenuation measurements, and that they might make popular the measurement of some
attenuation other than insertion loss. For example, the voltage wave amplitude
attenuation appears promising as an attenuation to characterize a 2-port device.

The increased use of computer-controlled automatic measurement systems will
make feasible new measurement techniques that would have formerly been impractical
because of tedious adjustments or calculations that are required. These techniques
are likely to place a higher demand on connector repeatability and make greater use

of substitution, as opposed to insertion techniques.
6.3. Cascade-Connected Attenuators

a. Introduction

It is well known that if one connects two fixed attenuators, say exactly
5 dB each, together and measures without error the attenuation of the combination,
the result may not exactly equal the sum of the attenuations (say 10 dB). A
difference can occur due to reflection interactions in the waveguides or transmission
lines both where the attenuators are connected together and where they are connected
to the measurement system. Depending upon the relative phases of the reflections,
the difference in attenuation may be positive, negative, or (in relatively rare
cases) zero.

This effect becomes important when one is testing the accuracy and repeatability
of a measurement system by measuring attenuators individually, then in combination;
and comparing the results (Beatty, 1971). Such a test will give useful information
about the accuracy of the measuring system only if the uncertainty.due to attenuator
reflections is considerably less than the uncertainty or inaccuracy of the measuring

system under investigation. The above effect is also important when attenuators
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are used as ''gage blocks" to extend ranges of power meters, or when fixed and

variable attenuatoTrs are cascade-connected in order to extend the range. In turret-
type attenuators, this effect may 1imit the useful frequency range because reflections
usually increase with frequency.

An early analysis of this effect has been published (Beatty, 1950). The
analysis was performed beforc the use of scattcring coefficients had been widely
accepted and wave matrices were employed. The results are still valid and the
nomogram giving limits of error in terms of VSWR's is still useful.

An extension of this analysis was made by Hashimoto (1968), in which the
connector pairs joining the padsbwere represented by cascaded Z-ports in a manner
similar to Beatty (1964b), and the 2-port representing the contacting portion of
the joint was represented by a single series impedance in a manner similar to
Harris (1965).

The analysis was extended to the case of cascade-connected variable attenuators
by Schafer and Rumfelt (L195Y).

In the present discussion, the results of the original analysis are presented
in a more convenient and slightly more general form. Scattering coefficients are

employed and non-reciprocal elements are not excluded.

b. Analysis

In the following analysis, UHF or microwave attenuators are considered. It
is assumed that the individual attenuators have been calibrated in a transmission-
line system having the same characteristic impedance (ZO) and critical dimensions
as the system in which the attenuators are to be used. A further requirement is
that the attenuators are passive linear 2-port devices having connectors or waveguide
flanges that permit comnection to the waveguide or transmission-line system without
discontinuity. Although attenuators can usually be considered as reciprocal devices,
there is little need to assume reciprocity in the analysis, and it is not assumed.

First the case of two attenuators is considered. Then the cases of 3 or more

cascaded 2-ports are analyzed.



(1) Two_Attenuators

The analysis of cascade two-ports have already been described in section 3.11
and 3.12. The results of those sections are directly applicable. First, the
attenuation of a single 2-port for energy entering port 1, is

1

— (3.55)
2

A =10 Log10

For the case of two attenuators designated as M and N connected in cascade as in
figure 3-15, the scattering coefficient S21 of the composite 2-port is written in
terms of the scattering coefficients Mygs Myys Nogs and nq of the individual

attenuators as follows.-

m,,n
g = 21721 (3.98)

21
1 -ny5my,

The attenuation of the combination is

+ 20 Logy ) —=— + 20 Logy o1 - nyqmy, |- (6.27)

A, = 20 Log
10
[myy Ingp

C

or AC = AM + AN * ey

The last term represents the error €,y that must be added to the sum of the
attenuations of the individual attenuators to obtain the correct attenuation of the
combination.

If we have (as is often the case) knowledge of the VSWR's npl1 and mpzz cor-
responding to ng4 and Moo but no knowledge of the phases, then we can calculate
the following limits between which €, ﬁust lie

Mmoo -1 B -1

20 Log10 1+ o 1 ‘o 1 2ey 2 20 Log10 1- . . (6.28)

These 1limits are shown in the nomogram of figure 6-6.
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Figure 6-6. Limits of error according to eq (6. 28).

:

Three Attenuators

The analysis of 3 cascaded attenuators can be based upon that for 2 attenuators

as follows. Suppose we designate the 3 attenuators as L, M, and N connected as shown

in figure 6-7, and their scattering coefficients by the lower case letters, %, m, and

n with the appropriate subscripts. We can consider that attenuator L is cascaded

with one other attenuator (which is formed by combining M and N). Thus the 3

attenuator case is a simple extension of that for 2 attenuators.



It can be shown (XKerns and Beatty, 1967) that for the cascade connection of

3 attenuators,

L0q M, N,
Sy, = 21 21 21 . (6.29)
FCL - 2ppmyp) (1 - mppnyp) - £pM32Mp1 Py ]
The attenuation of the combination is
Ag = A+ Ay + A+ 20 Loglol(l-zzzmll)(l-mzznll) - l22m12m21nlll’ (6.30)

where the last term is €25 the error that one would make in assuming that the attenua-
tion of the combinatjon equals the sum of the attenuations of the individual

attenuators.

Note that the error term may be written
€5 = 20 Loglol[l - %y,(mn) 4,101 - mzznll)], (6.31)
where (mn)11 is the scattering coefficient of the combination of M and N and is

given by eq. (3.98) if Sy, there is replaced by (mn)q;.

1 .2
L M N
1 4 " M2 " M2
Lyt Moy Mo Noy P22
(mn)yy (mn)y,
(mn) oy (mn),,

Figure 6-7. Three cascaded 2-ports, L, M, and N.

Assuming that we can obtain the VSWR's corresponding to £99s (mn)ll, m,os and
my;, We can then obtain the limits of €3 by referring twice to the nomogram of figure
6-6. In the special case where the term |222m12m21n11| from eq. (6.30) is small,
we can obtain the limits of €3 by referring to the nomogram twice if we can obtain

the VSWR's corresponding to 222, Mgy Mys, and n The limits of €5 are obtained

[«

1o ta _ o - 1 an
Luslol; »22m11|, an
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(3) Any Number n of Attenuators

The attenuation of any number n of cascaded attenuators is

K
1

A =

C A+oe, (6.32)

i~

K
where K denotes the position of the attenuator, numbering from the input side.

In evaluating €,» one can proceed as in.the cases of 2 or 3 attenuators,
deriving expressions which are extensions of eq. (6.27) and eq. (6.29). These
involve transmission coefficients of the interior located allenuators both in the
AK and the e, terms.

One can avoid deriving complicated expressions by the praocedure used in the case
of 3 attenuators. Consider first two attenuators at one end of the chain, using
eq. (6.27) to find the attenuation of the combination. Then one considers these
two attenuators as a unit, and determines S11 and S22 for the combination. These
are combined with the next attenuator in the chain and again an equation of the form
of eq. (6.27) will give the attenuation of the new combination. One repeats this

process until one reaches the end of the chain. It can be deduced that the term

€y in eq. (6.32) is

K-1 K

Sy2 S11ls (6.33)

™
=)
i}
=
ne~13
™

20 Logy,l1 -

where K'ISZZ denotes the scattering coefficient of the combined attenuators to the

left (direction of decreasing numbers) of the Kth attenuator, and Ksll denotes the

scattering coefficient of the Kth attenuator.

6.4. Mismatch Errors in Attenuation Measurements

a. Introduction

Presently, the most significant source of error in microwave attenuation
measurements 1is the mismatch error. It is not only significant in calibrating
attenuators, but largely determines how much one must degrade the accuracy of meas-
urements subsequently made with a calibrated attenuator in a different system than
that in which it was calibrated.

In the following, a simple analysis and evaluation of mismatch errors dating
back to 1947 will be reviewed, and subsequent work mainly by the author will then be
described. The cases of measurement errors for fixed pads and for variable attenuators

will be discussed.
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b. Analysis of Case of Fixed Pad
Ernst Weber (1947) analyzed the mismatch error in the measurement of the
attenuation of a fixed pad. He assumed that a pad could be represented by a 2-port
network which could be inserted into a system in the manner shown in figure 6-8.

He expressed the mismatch error ¢ as
e =Ly - A (6.34)
where LI is the insertion loss one actually measures, and A (the attenuation) is the
insertion loss that one would measure if the system were matched, or non-reflecting
(FG =Tp = 0).
We will derive an expression for e using modern notation that is equivalent to
Weber's expression. The insertion loss LI is
lPD
LI = 10 Logy g f;~, (6.35)
D

where the front superscripts i and f refer to initial and final conditions,

respectively.

FG*YIE)
a) Signal i Detector
Source !
1 -
T'erlh, Tl
Signal i 2-Port 1
b) Source o Network | Detector
] R B SIS
Jd

Figure 6-8. Model illustrating a) a measurement system, and
(b) insertion of a 2-port network into the measurement
system.

Before insertion of the 2-port, the power lPD delivered to the detector is

(Kerns and Beatty, 1967)

. P
ey = — A (6.36)
|1 - TGFD[2

where PA is the available power from the generator.
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After insertion of the 2-port network, the power fPD delivered to the detector
is
1 - |rql?
fp -p . i, n )
1 - |rpl? I1 - rgryl?

D A (6.37)

where n is the efficiency of the 2-port network as terminated in figure 6-8(b).

It follows that

1-]ryl2 |1 - r.r,|?
D 1
LI = 10 LOgIO[ 2 G1 . = (6.38)
- ryl% 1 - ey n
However,
] 21 - |r)2
21 D
n = > (6.39)
1-8,r 1 1 - ir|
Hence,
(1 - Tgr)(@ - 8,,1)
L, = 20 Log . (6.40)
I 10 S,.(lL - T.T)
21 G'D

If the system is non-reflecting (FG = TD = 0), the insertion loss is the

attenuation
A = 20 Log, . —+— 5
10 g l (3.55)
21
The mismatch error ¢ is
(1 - T.r)(1 - S,,T.)
e =L - A= 20 Log,, 6l 22D (6.41)
1 - Iy
R 1 "
This is equivalent to Weber's eq. (24), p. 826 where Ro = Sll’ R0 = 522’ RL FD’

R' = Ty, and RG = Tge
c. Evaluation of Error
Weber noted that his.eq. (24) could be decomposed into three terms, each of the
same form. In a similar way, eq. (6.41) equals
€ = 20 Logyg|1 - Ty + 20 Log |1 - Sy2Tpl - 20 Logy |1 - Terpl. (6.42)
If the complex cocfficients belonging to thesc terms were determined, one could then

calculate each term and combine them to obtain e.
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It has been the practice to determine only the magnitudes of these coefficients
(not their phases) and calculate the corresponding limits of €, assuming that the
phases might take on any value. Weber presented a graph (fig. 13+18 on his p. 827)
which enables one to determine the limits of the components when one is given the
VSWR corresponding to the magnitude of the complex coefficient.

Suppose that the VSWR's corresponding to |Tg|, [Ty, [S,,], and ]PDI equal
respectively 2.0, 1.15, 1.1, and 1.4. (These are the numbers in Weber's example.)
The 1limits of the individual terms are:

- 0.21 dB < 20 logy4|1 - Try| < 0.20 dB

- 0.07 < 20 logyoll - S,,T ] < 0.07
- 0.48 <20 logygl1 - Trpl < 0.51
- 0.76 dB < e < 0.78 dB

The mismatch error € must lie somewhere between the above 1limits, depending upon
the relative phases of the reflection coefficients.

It would seem desirable to determine both phases and magnitudes of the reflection
coefficients in order to determine e and make a correction so as to get closer to the
correct value.

It would also seem desirable to reduce FG and FD to extremely low values, because
then € would lie between very small limits and might even be negligible.

In practice, one can adjust FG and FD to have very small magnitudes indeed, but
there remains an uncertainty about their residual value. For example, if a slotted
line is used to indicate the achievement of PG = 0, the best one can normally do is to
obtain a flat response of the slotted line., The residual VSWR of the slotted line then
represents the uncertainty in the assumption that |FGl = 0. This might be 1.02, for
example. If the same slotted line is used to indicate the achievement of IFD' =0,
the uncertainty would be the same, or 1.02. One seldom has any corresponding phase
information. Hence the mismatch error limits would be obtained by the above procedure.

Assuming the same VSWR's corresponding to |[I.| and to [Szzl, the limits of error

1l
would be as follows:

-~ 0.0064 dB

{4

20 log,q|1 - Tory) < 0.0064 4B

0.0047

Ia

20 log,,l1 < 0.0047

- Sy,Tpl
- 0.0008 < 20 log o[l - rglp| < 0.0008

0.0119 4B 0.0119 dB

€

1A
A

The importance of adjusting both generator and detector for low reflection is

clearly shown by the large reduction in the limits of .
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d. Effects of Attenuator Characteristics
The 2-port representing the attenuator is characterized by its scattering
coefficients Sllg 812, 821, and SZZ' They can appear explicitly in the equation

for € by substituting from eq. (3.10)

(S4,S,, -~ S..S,,)T + S
r - 12°21 11°22’'p 11 (6.43)
1- SzzrD
into eq. (6.41). One obtains
(1 - 8,70 - S,,T) - S..,S
11° G 22°D 12 21GD. (6.44)

e = 20 1og10 ] -
6D

This can be used to evaluate the mismatch error when a given attenuator is inserted
into a known system. One notes in particular that the magnitude of the term
§325,3Tglp becomes smaller as the attenuation becomes larger. In the practical case,
it is negligible for attenuations of 20 dB or larger. If the attenuator is then

reciprocal and nearly symmetrical, the simple graph of figure 6-9 (Beatty, 1967b) can

be used to rapidly estimate approximate limits of mismatch error.

WOET T T T T
9 — CALCULATED LIMIT OF ERROR FOR 150
i [ SYMMETRICAL FIXED ATTENUATOR, » 1a0  —]
S 03[ HAVING ATTENUATION OF Yo —
W Qp| 20 DECIBELS OR MORE. 120 |
! LIS
o —— —
S Ql — =
i3 — =
w [— ]
T 0031 ~
E o002 ASSUME THAT — _|
2 00 |Tel=IT]
- o I —
= S Siz - —]
S S21 Spo—t—
= 0.003 2
= 0002 (s—er,,)(l‘szer) ]
3 = r' r

00| [

1001 1.002 1.0l .02 (R[0) I.ZO 20

VSWR OF SYSTEM

Figure 6-9. Graph for rapid estimates of limits of mismatch error.
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As the limits of error become smaller, the magnitudes of the positive and

negative limits become nearly equal.

e. Effect of Realizability Conditions
In calculating the limits of mismatch error, it has been assumed that the
phases of the complex coefficients involved can have any'valué. In theory,
realizability conditions for 2-ports impose limits on the permissible variations
of phase. However, it is shown in section 6.5 that this is not important for most
attenuators and only becomes significant when the attenuation is small (say less

than 3 dB).

f£f. Variable Attenuators
The above analysis is extended to variable attenuators as follows. The

discussion is a modified version of Beatty (1954).

(1) Introduction

The error in the measurement of changes in attenuation is important in the
calibration of variable attenuators and in the calibration of large attenuators,
using known pads as gage blocks or fixed attenuation standards.

The calibration of a variable attenuator consists in measuring the change in
the insertion loss as the attenuator dial moves from a zero or reference position
to another position that is marked or can be read on a scale. The change in the
insertion loss equals the change in attenuation if the attenuator is placed in a
reflectionless, or matched, system. There is always a degree of uncertainty regarding
the match, depending upon the accuracy of the instruments used to indicate or
recognize matched conditions and upon the reflections from connectors. For this
reason the change in the insertion loss cannot be considered to be exactly equal

to the change in attenuation, and the difference is called the mismatch error.

(2) Expression for Mismatch Error

Variable attenuators are of two types; (1) continuously variable, and (2)
variable in steps. The mismatch errors may be analyzed in the same way for both
types, since a change in a continuously variable attenuator from the reference

position to another positiom is equivalent to removing one attenuator and inserting
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another attenuator in the circuit. The insertion 1loss, in decihels, of the
attenuator corresponding to the initial (referencej position of the variable
attenuator is given by eq. (3.53) assuming that gy = Zyys and is

- T80 - Tsyry) - i512i521FGFL!

T |. (6.45)
821(1 - TGFL)

1L = 20 1og,

The voltage-reflection coefficients TG and TL refer to the generator and load,
respectively, and are measured at the terminals where the attenuator is inserted.
The scattering coefficients Sll’ 512’ 821, and 522 refer to the attenuator, cor-
responding to the reference or zero position of the variable attenuator. The
corresponding insertion loss for a different (final) setting of the variable

attenuator is

£ £ £, £
£ (1 - "843Tg) (X = "SppT) - 781,75,1T¢Ty,

v . (6.46)
S21( - Telp)

L =20 log10

The change in the insertion loss is

aL = fLo- iy = g0 10g101

- 20 log10

1 1 l
£ i
Sz21 Sz21

+ 20 logy,

(6.47)

1

f L f £, f
l(l S11lgd (1 = "SppTy) - 7859789376l
1 P il . _ i, 1. ’
[ = 39 Fg) (= 75,,1) 5127521760l

~

or

aLo= fa o ia g (6.48)

where fA, iA, and € in eq. (6.48) correspond to the three terms in eq. (6.47). The
error e must be subtracted from the change in the insertion loss to obtain the change
in attenuation, fA - iA.

The error term may also he written

a-frrpa - fszer)l

[N

e = 20 logy, (6.49)

i f . .
where Fl and Tl are the input-voltage reflection coefficients of the attenuator
terminated in a load having a voltage reflection coefficient .
The mismatch error in the measurement of a single attenuator can be obtained as

a special case of eq. (6.49). The reference attenuator vanishes in this case,
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changing Fl to PL, S12 to unity, and Sll and S to zero. Substituting these values

22
for Ty and S22 into eq. (6.49) yields

f f

(1 - Flrc)(l - SZZPL)
e = 20 10g10 3 (6.50)
1 - I’GI‘L

which corresponds to our eq. (6.41) and to eq. (24), page 826 of Weber (1947).

(3) Evaluation of the Mismatch Errors

It is possible in principle to evaluate the mismatch error by measuring the voltage
reflection coefficients FG’ FL’ Fl’ Fl, S,,, and S

22 , and substituting them into
eq. (6.49).

22
In many cases, the magnitudes of the reflection coefficients can be determined,
but their phases cannot be conveniently determined because of the limitations of a
particular measuring apparatus. Equation (6.49) can then be used to find thé limits
of the mismatch error, permitting the phases of the reflection coefficients to have

all .possible values. The limit of error can be expressed in the form

. a s frrgha s 15s,,r 0
€limit ~ g . - ) (6.51)
limit 10 1 i
e @ F Pryrgha # Is,,r
and the corresponding limit of error for single attenuators is
(1 s [TrgDQ 2 [8,,r D)
€rimic — 20 loggg - . (6.52)
, 1+ |rgrgl

For example, in order to reduce mismatch errors in the calibration of attenuators,

the magnitudes of FG and r, are made as small as possible, and their probable amplitude
is estimated from the accuracy of the apparatus used to recognize matched conditions
and from the known connector characteristics. It is difficult to accurately determine
the phases of these small reflection coefficients, and the mismatch error can generally
be determined not exactly, but within limits.

An example will illustrate the determination of mismatch error. If the voltage
standing-wave ratios pg, oy, Py, pi, Ppq» and p;2 fp =@+ (/@ - Ir])] cor-
responding to |Tof, [Tyl, Iyl, lri[, [S,,1, and 1s;2| are 1.1, 1.1, 1.2, 1.5, 1.2,
and 1.5, the limits of error for the initial attenuator calculated from eq. (6.52) are

approximately * 0.095 decibel. The corresponding limits of error for the final at-

tenuator are approximately * 0.185 decibel. The limits of error for the change in
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attenuation calculated from eq. (6.51) are approximately * 0.242 decibel. It is seen
that the mismatch error for the change in attenuation is less than the sum of the

mismatch errors in measuring each attenuator individually.

g. Avoidance of Mismatch Error
It has been mentioned that it is possible in principle to measure both amplitudes
and phases of reflection coefficients and make a correction to an attenuation meas-
urement. (Although not often done in the past, it may be done more often now
when using computer-controlled measurement systems.)
Another method for avoiding mismatch error has been proposed (Rabinovitch, 1962),

but its value has been questioned (Leber, 1964).

h. Later Work

Additional analysis of mismatch errors when using rotary-vane type variable
attenuators has been published (Engen and Beatty, 1960), (Holm et al.,v1967). This
type of attenuator causes little change in phase shift and hence the mismatch errors
are small.

The effects of reflections and dissipative losses in connectors and adapters
are not adequately taken into account in the previous analysis because the attenuator
is represented by a single 2-port. Later, in section 6.6, the attenuator and the
connector pairs are represented by thrce cascadcd 2-ports (Beatty, 1964b), so as to

involve the connector parameters explicitly in the analysis of mismatch error.

6.5. Effects of Realizability Conditions
The purpose here is to discuss the effect of the realizability conditions for
2-ports upon the estimation of limits of mismatch error in high-frequency and micro-
wave attenuation measurements. Only the case of fixed attenﬁators is considered.
It will be shown that the realizability conditions need be considered only for
certain ranges of attenuation and VSWR, and that the conventional method of estimating
mismatch error limils is satisfactory for most attenuators.

As 'shown in the previous section 6.4c, the mismatch error is

O - S1aTed (- Sy5Tp) = S358,176Tp|

€ = 20 log
10
1

(6.44)
Talp



1f only the magnitudes of the individual factors in this expression are known, and
it is assumed that the phases can have any values, e will have limits determined by

(= ST (@ = [S,,Tpl) = [S,8,1T¢Tpl

L+ |rgT

€1imit - 20 logyg (6.53)

ol

The limits of mismatch error in measuring the attenuation of a fixed attenuator are
usually determined from eq. (6.53), or its equivalent. This is a valid procedure

if the above a§sumption about the phases is valid. However, within certain ranges

of attenuation and VSWR, realizability conditions limit the values which may be
reached by both magnitudes and phases of the scattering coefficients. Within these
ranges, the limits of error estimated from the above equations may be too conservative.
Therefore it is of interest to determine these ranges of attenuation and VSWR.

In order to simplify the analysis and presentation of results, only symmectrical
reciprocal attenuators are considered. This is felt to be a useful approach, since most
attenuator pads approximate these assumed conditions.

The realizability conditions (Kerns and Beatty, 1967) for a symmetrical reciprocal
2-port network can be written as follows. (From symmetry, the characteristic
impedances Z,; = Z,,, and S,, = S;; = |811{ej¢11, and also from reciprocity, S;, =
Sy = 185 1e7¥50 )

1521]2 <1- lslllzs (6-54)
and
1- lslllz - ISZII?‘

[cos (P, = ¥q7)] < . (6.55)
21 11 21571571

The above equations define the ranges of attenuation and VSWR (regions) over which a
passive, symmetrical, reciprocal 2-port is 1) not realizable; 2) realizable providing
by - Wqq) is limited to certain values, when the right side of eq. (6.55) is less

than unity; and 3) realizable with no limits on (¢21 ) when the right side of

B
eq. (6.55) is greater than or equal to unity. These three cases are shown in figure
6.10. When the attenuator characteristics lie in region 3), the conventional method
of estimating mismatch error limits is satisfactory. In region 2) the conventional

methods would give too-conservative limits, and a different method (Youla and Paterno,

1964) would be required.
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Figure 6-10. Ranges of attenuations and reflection coefficients of
symmetrical reciprocal attenuators for which
realizability conditions restrict the relative phases
of the scattering coefficients.

It can be seen by inspection of figure 6-10 that the conventional method of

estimating limits of mismatch error is satisfactory for attenuators having an
attenuation greater than 2 dB and a VSWR less than 1.50. Since most fixed attenuators
have characteristics which fall within these 1imits, it is not often necessary to

consider the effect of realizability conditions upon mismatch error limits.
6.6. Effects of Connectors and Adapters
a. Introduction
This section is a modified version of Beatty (1964b). Suppose that we wish to

answer the following question: (If the attenuation of a stable fixed attenuator is

measured at thé same operating frequency in two different systems, to what extent is

224



the difference of results attributable to differences in the waveguide® joints or
connectors® used at the insertion points??!? (Effects of connector reflections and
dissipative 1losses are taken into account, but leakage is not considered.)

In seeking an answer to this question, the representation ordinarily used for
the insertion of an attenuator into a waveguide system, and the concept of insertion
loss itself were found to be inadequate, and a new analysis was developed. The
essential feature of the new approach is that the waveguide joints or connectors at
insertion points are not assumed to be perfect,® i.e., having no loss, no reflection,
and effectively no characteristic phase shift, but are represented by two-ports
having appropriate characteristics. In addition, the attenuator when installed in
a circuit is no longer represented by a single two-port, but by three cascaded two-
ports, the outer ones representing the connector pairs, and the inner one représenting
the core or kernel of the attenuator. The quantity of interest is the loss in power
delivered to the load when the above three cascaded two-ports (representing the
attenuator and its associated connector pairs) are substituted for the single two-
port representing the connector pair at the insertion paint. This lass in power,
expressed in decibels, is called the substitution loss (Beatty, 1964a).

Since the result of an attenuation measurement does depend upon the charac-
teristics of the connectors at the insertion point, one must specify these charac-
teristics if such a measurement is to be precisely defined. This leads to a slightly
modified definition of the quantity of interest in the measurement of a quantity
characteristic of the attenuator, and it is called the standard attenuation. (In
section 6.2g, it is called "characteristic insertion loss" or ''characteristic
attenuation.')

The analytical methods develuped here are applicable to uvther situations in which

a waveguide component is inserted into a waveguide system. They might be applied

8The term "waveguide' is used here in a broad sense to include, for example, both
uniconductor waveguide having a rectangular cross section and two-conductor waveguide
having a concentric-circular or coaxial cross section.

9Tl . +awm Mognnoctorp!! uscd T+ 1 a brocad scnsce +o 4 iecnat
d tc < t

1nc TIm ToOnNnecCToY is usc aAcYC 1In & o°orYodada Sonsc ¢ the CV1ICCSo CS51g cd
to join together two sections of waveguide having the same cross section. A '"perfect
connector pair" is one which would have no leakage, no loss, no reflection, and
effectively-zero-characteristic phase shift.

9The term "insertion point'" is used to designate the place where a waveguide component
such as an attenuator is inserted into a waveguide system. It is thus not a geometrical
point, but may be the region. where a connector pair belonging to the system is discon-
nected, or where an adapter belonging to the system is removed, in order to insert a
waveguide component. :
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for example to analyze the effects of connectors or adapters'! on accurate measurements
of the characteristic phase shift of phase shifters, or on the frequency of transmis-
sion-type cavity wavemeters. However, at present they will be applied only to micro-
wave attenuation measurements.

Previous analytical methods used to obtain equations for insertion loss,
attenuation, and mismatch error for the case of a single fixed attenuator have been
given in sections 3.8 and 6.4. Correqunding equations will be obtained using dif-
ferent methods and the results will be discussed. The specified question mentioned
earlier will be answered and a calculated limit given for the effect. The techniques
developed will then be applied to the case of variable attenuators, and to fixed
attenuators having nonmating!? connectors. Some of the cases having immediate
interest will be discussed in some detail and calculated examples given to illustrate
the use of the error equations. Useful formulas and graphs supplemental to the

analysis will be given.

b. Previous Analyses
It has been customary to represent a waveguide component such as an attenuator

by a two-arm waveguide junction (two-port), as shown in figure 6-11 where P and

rG‘“'i—'I T

!
Generator ! Load |ip

|
Insertion Pomf/_\ Waveguide

Ts

2
T

Generator 2-Port Lood |fp

TI-t

T
|
T
1
Attenuator

Figure 6-11, Simple representation of an attenuator by
a two-port inserted into a waveguide circuit.

'1The term "adapter" is used to designate a device designed to join together two
sections of waveguide which have already been fitted with connectors. A perfect
adapter-connector combination would have no leakage, no loss, no reflection, and
effectively-zero-characteristic phase shift.

!2The term "nonmating connectors' as applied to a waveguide components such as an
attenuator is meant to imply that the connectors on each end of the components are

of such a type or sex that they could not be joined together even if it were possible
to move them physically into a favorable position for such joining.
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fP designate the powers dissipated in the load under the initial and final conditions,

respectively. The reflection coefficients of the generator and the load are
designated as Tq and PL’ respectively. It is usually assumed that they are the same
at the times that iP and fP are observed. (Since the load in attenuation measuring
may also be a detector, one finds T instead of Ty in many previous equations.

It is also apparent from the diagram that the connector pair or adapter at the
insertion point is assumed to be perfect.

It has been customary to assume that one actually measures the insertion loss
ahd that it can be written

Z

02 | 7 8137 - 8,5T ) = S1,55 76T,

SZl(l - FGFL)

i 2
- P _ .
L; = 10 logyg = 10 logg, [ }. (3.53)

P Zo1

It has also been assumed that the desired quantity is the attenuation, which may

be written

Zoz 1|
A= [LI]FG=FL=0 = 10 1og10 £—~ Tg——T; . (3.54)
01 21
The difference between A and LI is due mainly to system reflections or mismatch and
has been called the mismatch error. It is written
(1 - S33Tgd (- 855T1) - 515559767y

1 - PGrL

=L - A= 20 1og10

I . (6.44)

It is seen that the connector or adapter used at the insertion point is not
shown in the diagram, and its characteristics do not appear in the equations. Hence

there is no way Lu calculatle its effect un the measurement.

c. An Tmproved Representation

A two-port, or two-arm waveguide junction or transducer has associated with it
two waveguide leads through which energy may enter and leave. The terminal surfaces
of the two-port are cross-sectional surfaces within the waveguide leads. Usually
only .one propagating mode is associated with each lead and each terminal surface.
A waveguide component such as an attenuator evidently cannot itself be represented
by a two-port unless the connectors are perfect and all connectors mate at coplanar
butt joints. Since this requirement is often not very closely approximated by actual
connectors, the representation of figure 6-12 is more realistic. The attenuator.
installed in the circuit is represented by a composite two-port composed of three

cascaded two-ports, A, B, and C.
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The central core or kernel of the attenuator is represented by B. The connectors
BG and B, at each end of the attenuator mate with the connectors DG and D; , respec-
tively, of the system to form connector pairs represented by two-ports A and C.
When the attenuator is removed, the system may be closed as shown in figure 6-13 by
joining connectors Dg and Dy .

The precise manner in which the comnectors join and separate is not specified,
as this would call for further more complicated analysis of specific discontinuities.

Further work has been done in characterizing connectors (Harris, 1965), (Hashimoto, 1968)

The analysis of the situation represented in figure 6-13 proceeds as follows.

Waveguide Sections

Kernet
or Core

f B L
R Waveguide Component }

1 ! -~ 2
' ! [
{ DB () @  Bio, |
Connector Kernel Connector I

Pair + or Core + Pair
T T 1
i ~-A ~8 C i
R -

Composite Waveguide Junction
or Composite 2-Port

Figure 6-12. Representation of a waveguide component,

i 2
Te=—{ 0g0L ||_'1" L
i

Generatar .. .. Load }ig
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Attenuator
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t
1
[

oo L+ o T e i o]
[ i
! ! | 1
L |

Final 2-Port

—nN

Figure 6-13. Improved representation of attenuator insertion
into a waveguide system (Case 1).

d. Substitution Loss
When inserting an attenuator into a measuring system, as shown in figure 6-13,
one actually substitutes the attenuator and two sets of connector pairs A and B,

for the connector pair D which initially connects the system together. Thus one
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measures the substitution loss, or the ratio of p to fP. It is similar to

eq. (3.53), but the characteristics of the connectors are now implicitly involved,
as they influence the scattering coefficients of the initial and final two-ports.

The substitution loss L. is written as follows:

S
iP
LS = 10 1og10 ;; = 20 log10
i £
5,0 (- Tspyrga
fg a- sty
21 117

£
52271)

1
S2271)

£, f

- 595 851 T6T 5519
T . .
12 82176y,

where the front superscripts i and f on the scattering coefficients refer to the
initial and final two-ports, respectively.

Additional insight is obtained by writing eq. (3.51) in two additional forms.
First, it is written as the difference between the insertion losses of the initial
and final two-ports as follows:

£ £ £, f
(1 - 78T (3 - "8,5T) - 781,781 6Ty,

.F
S21(1 - Tgly)

Lg = 'L - 'L = 20 log,,

i i io i
(1= 78T (1 - 7Sp5T ) - 781,75, Tl

1
S0 (1 - Telp)

- 20 1og10 - (6.56)

It is apparent that, analytically, substitution loss is equivalent to a difference

between two insertion losses. One could thus avoid the use of the concept of

substitution loss, if desired. However the assumptions made in the definition of

substitution loss are more easily realized in practice. In addition, it is more

convenient to use when analyzing variable attenuators, as will be seen later.
Another form of eq. (3.51) is the following

£

f f. f

Sp2T1) - 78428

1 - FGPL

. (1 -5, Tl
Lg = (Fa - Ta) + 20 10g;, 11'6 216

L

o
[}

1

J.Oglo

~
[}
[}
~1

~

i i i. i
[(F - ST (A = 7Sp,T) = 7815 Sy Tl
I 1-r

6'L
The first two terms above on the right are attenuations as defined in eq. (3.53) and the
last two terms are similar in form to eq. (6.44), the mismatch error of the previous
analysis.

More complex expressions, containing the scattering coefficients of two-ports,
A, B, C, and D could be obtained by making the appropriate substitutions for the

scattcring cocfficicents of the composite final two-port (Hashimoto, 1968).
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The substitution loss which would occur in a non-reflecting system is of

interest and can be deduced from eq. (6.57) when FG = FL = 0. It is
i
£ i S,
£

(L (TA - "A) = 20 10g10

(6.58)

§lr =r.=0 °
¢TI S,

It is simply the difference in the attenuations between the initial and final two-

ports.

e, Standard Attenuation

fA of the final two-port

In practice, one is not interested in the attenuation
for two reasons. First, it is difficult to measure since the initial two-port would
need to be a perfect connector which cannot be actually realized. And second, it is
not characteristic of the attenuator itself but of the attenuator Kernel B plus
two associated connector pairs A and C. The system connectors DG and DL which do
not helong to the attenunatar are parts of A and C.

The quantity of interest is the standard attenuation which is the above difference
in attenuation when the initial two-port represents not a perfect connector pair,
but a standard connector pair.!® An expression for standard attenuation SA is

obtained as follows: Equation (6.58) is written in terms of the scattering equations

of two-ports A, B, C, and D as

(Lgdp ap =g = Ap * A + Ap - A
¢ TL
(1 -a,,b..)(1 - b,,c,.) - a,,b.,b,.c
+ 20 Togy 22°11 2211 22°12P21¢11
1 - ay0y

- 20 logyy|1l - ay,cq |

or
do1

(Ls)rG=rL=o = 20 dogyg | [0 - a55b53) (1 = BopCay) - appbypbyyeqy ) (6.59)

21P2121

If the two-port D represents a standard connector pair, and d21 is replaced by S521,

the standard attenuation is

S

s 521

. (6.60)

A = 20 logy, O YA FRACHRLIP T R PP PLIT P L

a31P21%21

137 "standard connector" is one which is made precisely to standard specifications for
the particular type -of connector under consideration. Standard connector pairs usually
have low but appreciable dissipative loss, reflection, and leakage.
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1t is of interest to examine the form of eq. (6.58) when the connector pairs are
all identical and nonreflecting. One obtains

Ay + A

At Ag (6.61)

(g)p =r =0 ~
A=C=D
Under this assumption, eq. (6.61) expresses a quantity characteristic of the attenuator
itself as represented by the kernel B and connectors BG and BL'
To the extent that all connectors are identical and nonreflecting, eq. (6.60)
will also express a quantity characteristic of the attenuator itself. The standard
attenuation as defined above is thus to a good approximation characteristic of the

attenuator itself, and will be considered the desired quantity in an attenuation

measurement.

f£f. Connector and Mismatch Errors
The error eg in the measurement of standard attenuation cannot be obtained
simply by subtracting eq. (6.60) from eq. (3.51), eq. (6.56), or eq. (6.57). This
is evident when we consider figure 6-14 which represents the substitution loss of
an attenuator measured in two different systems, M and N. Even though the attenuator
is the samc in both cascs, it is associated with conncctor pairs A end C in systom
M and with P and Q in system N. Thus the final two-ports are different in the

two systems.

Iy  2m In 2N
TGM**iD@DLf"FLM Tbn*‘jH@HLr-’TLN
! H
;_Y_r‘ . ~\——.~v»_.—’ N
Initial 2-Port ‘M Initial 2-Port ‘N
%M Attenuator : 2|M 1,N Attenuator ?N
i DgBg BuD, 1HgBg BuHL !
Jal]s[{c[C e el ol
! H i : ,‘ 1 ' :
Final 2-Port fm Final 2-Port N

(a) | (b)

Figure 6-14. Representation of same attenuator installed alternately
into two different systems. (a) System "M."
(b) System "N. "
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In order to obtain an expression for €gs let system M be nonreflecting and
two-port D represent a standard connector pair having an attenuation AS. Then the
error €¢ is the difference between the substitution losses in systems M and N, and

is written

€s T fr * f11 * €111
where
ep = (Ag - App) *+ (Ap - A + (Aq - AQ)
_ (1 - Pypbyg) (1 - byoay3) - Pyybyybyiayg
g1 = 20 log10
1 - P41
(1 - a;,b99) (1 - byocqg) - ayybybyeyy
- 20 1og10
1 -2y
1 -7p,,q
+ 20 105, | P22
- aycn
and
N N £N. fN
_ (1 - 7S T - 778y Tp) - Sy, Sy, Tty
€ = 20 log
11 10 T oo
¢'L
(1 - hyqTW) (L - hyoT) - hy b, T.T
- 20 1og,, 11'a 2201, 128 el ) (6.62
1- 1T,

The error component eq will vanish if corresponding connectors at the insertion
points are identical, since it is seen from figure 6-14 that the resulting condition
will be that D = H, A = P, and C = Q. This is a sufficient, but not a necessary,

= A
Q H

+ AA + AC. Usually the corresponding connectors at the insertion points will be

condition since €1 will vanish for any condition for which Ag * Ap *+ A

similar, and it is evidently worthwhile to make them as nearly identical as possible.

The error component €11 will also vanish if corresponding connectors at the
insertion points in the two systems are identical, and this is again é sufficient
but not a necessary condition. It will also apbroach zero if the attenuator kernel
is nonreflecting and its attenuation becomes arbitrarily larse. The individual terms
are of the same familiar form as eq. (6.44) for mismatch errof in the simpler analysis.
The error component €111 is very similar in form to eq. (6.44) and will vanish
if the system reflection coefficients I'a and FL vanish. Again this is a sufficient

but not a necessary condition, since the relative phases of the reflection coef-

ficients involved might possibly be such as to make the two terms vanish or cancel §
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each other. It is clear that €111 differs from the other two components in that the
condition of identical corresponding connectors at the insertion points does not
make it vanish. The limits of terms in €11 and €711 similar to eq. (6.44) may hbe
evaluated by methods previously described in section 6.4, and they are typically
each of several tenths of a decibel, or less. Since each such positive term is
paired with a similar negative term, it is the differences which are important

in these errors.

Since the various terms in eq. (6.62) may not all be of the same sign, some of
them may tend to cancel others, and the overall error eg may be lower than some of
the individual terms. In careful measurements however, one cannot afford to take
this for granted, but should either make a thorough investigation, or quote a
conservative limit of error, assuming the most unfavorablc phasec relationships of

the coefficients involved.

g. Same Fixed Attenuator in Two Systems

The motivating question asked earlier can now be answered using the representa-
tion of figure 6-14 letting two-port D represent a connector pair which is not
necessarily a standard one, and letting FGM and FLM be representative of an actual
system, and not an idealized one having no reflections.

Assume that in attempting to measure the standard attenuation of a fixed
attenuator in two different systems, we actually measure the substitution 1oss.
We are interested in the difference ALS in substitution loss as measured in two
systems. As in the previous situation, a part of this difference is primarily due
to differences in connectors DG and HG, and DL and HL’ and the other part of the
difference is due primarily to differences in system generator and load reflection

coefficients.
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Referring to figure 6-14 and eq. (6.57), we can write

ALg = Lgg = Lgy = (FNa - My o (M o ANy
N £ N, N
v 20 10g, | ST @ - SapTuw) © Siz Saalon"iw
10 :
Lo Ty
iN iN iN, iN
© 20 1log (- 7Sy T - 78p,Ti) = 812 SaTenin
10 -
- TonTiy
M Y M, £M
© 20 1og a 5127 S22l 812 SaiTomim
10
1o Tonlpy
iM iM Mg  iM
@ - *soro o - Msoory -t CHI PN
+ 20 logy, 1176M 22 LM 12 L 663
1 - Tonlim
The sufficient conditions under which ALS will vanish are M = 1N, fM = fN,

FGM = FGN' and FLM = FLN' In practice, one might try to achieve these conditions, but

some uncertainty will always exist. In order to evaluate ALS using eq. (6.63), infor-

mation would be needed on the characteristics of the two-ports 1M, fM, 1N, and fN, as

well as on the system generator and load reflection coefficients FGM’ FLM’ YGN’ and FLN
effective at terminal surface 1M’ ZM, 1N’ and ZN.

It 1s possible to reduce the magnitudes of the system reflection coetficients to
very low values (say 0.001) by the use of tuners, in which case the last four terms

of eq. (A.63) wonld he neégligible, e.g., less than 0.001 4dR. Thus the case of AL5

for T =T

M w - Ten FLN = 0 is of interest and is given by

(BEs) (1 ot 01

[Ten=Try=0!

= AA = (AD - H) + (AP - AA) + (AQ - AC)

(1 - Pypbyg) (3 - byyayg) - Pypbyybyyagy

+ 20 1og10 a
- a

(6.64)
22071201 - byocyy) - oanpbigbacnn

The above result equals ey * eqg of eq. (6.62) if we replace AD by AS, and

vanishes if connectors DG = HG and DL = HL.
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The use of eq. (6.64) in the evaluation of errors due to differences in the system
connectors is illustrated by the following calculated examples. Consider the case in
which all connector pairs in system M are identical, or A = C = D, but the left-hand
connector DG at the insertion point is modified and becomes HG’ but DL and HL remain
the same. Under this supposition, connector pairs H and P will be the same, and
connector pairs A, C, D, and Q will be alike.

If connector DG were a male type-N connector, for example, it might be modified
by removing the compensating step in the outer conductor and moving the step in the
male center conductor outward so as to close the gap or notch normally present. In
the following examples certain values are assumed for the reflection coefficients
appearing in eq. (6.64) which are thought to be realistic in view of the measured
results obtained at NBS for certain type-N connectors shown in figure 6-15. Since
large variations among connectors of the same type are possible, these results

cannot be regarded as typical of all type-N connectors.

1.25

1.20

LIS

VSWR

110

1.05

0 002 004 006 008 000 0.2

INCHES SEPARATION FROM
FEMALE CENTER PIN TIP

TO SHOULDER ON MALE PIN
OF TYPE N CONNECTOR

Figure 6-15. Experimental data for VSWR of type-M connector pair.
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Example 1

Given a 3 dB fixed attenuator having a kernel VSWR of 1.22, connector pairs A,
C, D, and Q having VSWR's of 1.22, and connector pairs H and P having VSWR's of 1.00.
Thus lplll = lpzzl = lhlll = lhzzl =0, Iblll = Iazzl = lclll = |q11‘ = 0.10, and
lb12b21| =0.5.

The attenuation terms in eq. (6.64) have components due to dissipation and
reflection, and those due to reflection cancel in the above example. The dissipative
components should also nearly cancel, leaving only the final term of eq. (6.64).

It can be written to a good approximation as
20 ogyol1 + byy(ayy - Pyp) + Dyyleqg - ayj) * bysbyy(ayycyy - pypagdl,  (6.65)
if the connector reflections are small, corresponding to reflection coefficients of
magnitude less than 0.11. Limits of AA, assuming the worst phase combinations are
-0.131 dB < AA < 0.129 dB.

The 1imits of error in the above example are significant ones, well above
the usual precision of a good attenuation measurement. However, many attenuators
which are presently commercially available have better characteristics than were

assumed above. Hence, another example follows.

Example 2

Given a 3 dB fixed attenuator having a kernel VSWR of 1.15, connector pairs A,
C, D, and Q having VSWR's of 1.15, and connector pairs H and P having VSWR's of 1.00.
Thus 'plll = |P22, = lhlll = lhzzl =0, lblll = Iazzl = 'clll = ’qlll = 0.07, and
[byybyy | = 0.5

Proceeding as in Example 1, the limits of AA ar.

-0.064 dB < AA < 0.064 dB.

The 1imits of error in this example are smaller, but still significant, since a
precision of 0.03 dB is often obtained in a measurement of 3 dB at frequencies of
4 GHz and above.

If the fixed attenuators in Examples 1 and 2 above have attenuations of 20 dB or
more (instead of 3 dB), the calculated limits of AA will be reduced to approximately

+ 0.09 dB and * 0.04 dB, respectively.

236



1 Lo !
To-— pgLs o Te—1 ogo, F—T1

S A
System Slotted Line

1
i i
1
i

1 2 1 2
B'—d" o T Te~— DgiBg , | BUDL T

|
1 | 1
i ) I

——— Ao —
Slotted Line System

Figure 6-16. Representation of arrangement often used
to adjust system reflections prior to
attenuation measurement,

h. Adjusting Systems for Zero Reflections

In adjusting an attenuation measurement system in an effort to make Tg = r, =0,
the arrangement represented in figure 6-16 is often used. A slotted line is connected
in turn to system connectors DG and DL’ and tuners are adjusted until the reflection
coefficients Fé and TL observed in the slotted section effectively vanish. This does
not necessarily make the reflection coefficients T'g and Ty of the system vanish
because, in general, the two-portSFU and V may have reflections. The two-ports U
and V are composite two-ports representing a connector pair and the taper or transition
section at the end of the slotted line.

Alternatively, a tuning stub may be included, and is used to adjust for the
condition Uyy = Ve, =0 (Mathis, 1955). This condition, together with the condition
Tg = TI',
system vanish. The measured substitution loss will then equal the standard attenuation,

= 0, will make the reflection coefficients Tq and T, of the measurement

provided that connector pair D is standard. Experimental arrangements are indicated
in figure 6-5, section 6.2. ‘

A tuning circuit using directional couplers can be used to achieve source or load
Zo-match (Beatty and Fentress, 1971). It is worthwhile to tune for the condition
Uy, = Vyp = 0 (tuning out of the residual VSWR) because one can then adjust for system

SWR's of 1.01 or less instead of having to "add" to this the residual VSWR of 1.04

to 1.10 that may be present.
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1 1]
If the condition Uyy = Vyq = 0 is not obtained and FG and FL are not made to

vanish, the measured substitution loss then is given by eq. (3.51) where

~ Ig = Uy
rg - :
(ugpuy1 - Upqlyy) * ugylg
' Iy~ ¥1p
FL= T
(via¥21 = ViaVaz) * VaolL
ic . ie i ie
S11 = dy1s Syp T dyps T8y = dyps TSy T dyy
£ _ by + (byybyy - bygbyyleyy
17t T fta (1 - a,,b::)(1 - byoCyq) - @obioboc
22P11 2211 22P12P21¢11
£ . © 815b95C,
12 ©
(1 - ay5b77) (1 = byycyy) - @yyby5059¢11
£5 - 83102121
21
(1 - agybyg) (1 - byyeqy) - aypbipbpgcyy
and
b, + (by,b,. - b.-b,)a
fo » 22 12P21 7 P11Pag)ay;
S22 T €22 * ©12%1 . (6.66)

(1 - ay,by33 (1 = byycyq) - 3550450900

i. Same Variable Attenuator in Two Systems

Both continuously variable and step attenuators can be analyzed by the same
method, which is an extension of the previous analysis. A continuously variable
attenuator can be regarded as though one removed an initial attenuator corresponding
to the initial setting, and substituted in its place a final attenuator corresponding
to the final setting. This point of view is valid, even though the continuously
variable attenuator remains in the circuit at all times.

A respresentation which applies to the measurement of a given change in a variable
attenuator first in one system and then in a different system is shown in figure 6-17.
The system connectors nG and nL, HG and HL are not shown as joined toagether hecause
in some cases it is not possible to do so. For example, if the step attenuators have
female connectors on both ends, the system connectors will all be male and will not
mate together.

Although the initial attenuator, represented by JG -J - JL and the final

attenuator, represented by BG - B - BL are the same in two systems, the initial

and final composite two-ports are not.
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The difference in the substitution loss measured in the two systems M and N is

written down directly from inspection of figure 6.17 and a knowledge of eq. (3.51).

_ L f £ i, i
Loy = bgy = CAy - Ay + Uy - TAy)
i i T
. (a my o) (37 Tmpo Ty ™12 M1 oMt Lm
20 lOng
L - TorTom
r £ £
20 1 (- my P (- "mp Tryd - Tmy Mo TayTiy
B %819
- Touliu
£ £ £ £
. 20 1 (3 - "oy T (1 - "y Ty - "oy o TeTyy
%810
- Ton'in
(1 - in Ty (1 - in Tia): - in in Tl
- 20 108, 117N 2271y 12 P NN g ery
1 - Tenlin

In order for eq. (6.67) to vanish we not only would need identical connectors at
the insertion points (D = HG and b, = HL) but corresponding system reflection coef-
ficients would need to be equal (FGM = FGN and Tim = FLN)' Even if these (sufficient)
conditions are not obtained, it is possible for eq. (6.67) to vanish under other less
easily described conditions, although it is not very probable. In general, there will
be a difference in the substitution losses measured in the two systems.

If both systems are nonreflecting, eq. (6.67) reduces to

f i
L f f i i _ ™1 21
(Lgn = Lgm) (romr=0] = CAv = Ay + (TAy - TAY) = 20 logigiy——= * 7= (6.68)
GM " LM m n
11 21
Ten=Trn™0
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Representation of substitution of same final and initial

The above equation is written in terms of the scattering coefficients of the

individual two-ports which make up the initial and final composite two-ports as

follows:

(Lgy - LSM){TGM=PIM=0
Pon=Tin0)
= (AA - P) * (AC - AQJ “(AE - AG) - (AF - AK)
+ 20 10g. |7 2220100 (1 7 Bapcyy) - aypbybycyy
€10 .
1 a2%11
(I - epp3yy) @ - 3p0819) - e0dq500y 8y,
- 20 logy g
L-egpfn
. 20 1 (- 8523010 B - 3p5ky9) = 8553150015
%210
1 - gk
(I - Pypbyy) @ - Dyraqy) - Pyybygbyyaygy
- 20 10g10
1= Pyodyy
- a,,e,, 301 - g,,%k,.)
+ 20 10210 22711 22711
(L= eppfy) (- pyyayy)
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If corresponding connectors at the insertion points in the two systems are
identical (DG = HG and DL = HL), eq. (6.69) will vanish. Even if this condition
does not hold, it could vanish if the positive and negative terms canceled each other.

It is interesting to consider the case in which corresponding connectors at the
insertion points in the two systems are not identical, but corresponding connectors

on the two attenuators are. (JG = BG and JL = BL.) In this case we have A = E,

!

F=C, G=P, and K = Q. Many terms cancel and eq. (6.69) reduces to

(Lgy = Lgw) S LS
Fon=TpN=0
J¢=Bg
J =By
. (1 - 2ay,by9) (1 - Dypcqq) - 8ybybyyeqy
= 20 1og10
L - 25Xy
(X - ay,319) (1 - J55097) - 35539535161
- 20 log10
1 - 250
. 2 (1 - 8p379) (3 - dgoky4) - 825371231
0 logy,
1 - gk,
(1 - 895b37) (1 - byokyy) - gypbyobyiKyy
- 20 10g10 K : (6.70)
L= gk

The conditions JG = BG and JL = BL would apply in the case of a continuously
variable attenuator that was not physically removed from the circuit. They would also
apply to step attenuators provided their connectors were sufficiently identical.

The additional conditions JG = JL = BG = BL, DG = DL, and HG = HL would not reduce
the size of eq. (6.70), but would reduce the uncertainty in the measurements of the
two systems.

1t 1s clear from the foregoing that in order to insure the same change in 10ss
in two systems from the same change in settings of a variable attenuator, 1) the
corrcsponding system reflection coefficients must be the same and 2) the corresponding
system connectors at the insertion points must be the same. Even when these conditions
are not realized, some reduction in the difference is obtainable if all other connec-
tors are as nearly alike as possible. It is also clear that reduction of connector
reflections and dissipative losses will also reduce the difference. A fortuitous
relationship of the phases of the reflection coefficients may also make the difference

vanish, although the probability of this happening is low.
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j. Standard Incremental Attenuation

The desired quantity in a measurement of a variable attenuator is the change i,
attenuation or incremental attenuation (Weinschel, 1960) from an initial setting to
a final setting. This equals the substitution loss when the system is nonreflecting
and is given by eq. (6.58). However it must be recognized that the characteristics
of the connectors DG and DL at the insertion point are implicitly involved, even if
only to small degree. This is evident from inspection of figure 6-17, where it is
seen that connectors DG and DL are involved in a slightly different way in the initia]
and final two-ports.

In order to define a precisely-repeatable incremental attenuation, the connectors
at the insertion point should always be the same, and should be standardized. With
standard connectors at the insertion point, we then can measure '"standard incremental
attenuation."

This quantity may be expressed by reference to system M in figure 6-17 as
i

M1

£

ASA = 20 log,
M1

or

ASa = A

A * A

+ A - AE - A, - A

B C J F

+ 20 logyo| (1 - ayybyp) (1 - byyeyy) - aygbyabyreyl

- 20 Togyol (M - eppd1p) (0 - Gppf10) - egodngipfinl- (6.71)
where it is understood that DG and DL’ which form parts of two-ports A, E, C, and F,
are standard connectors.

The error in measuring standard incremental attenuation (due to system reflec-
tions and differences from standard conditions in the actual system) can be evaluated
by comparing eq. (6.71) with eq. (6.67), letting M represent the idealized system with
standard conditions (FGM = rLM =0, DG and DL standard connectors) and letting N
represent the actual system. The procedure in writing equations and calculating
examples follows along lines of the analysis pertaining to fixed attenuators. The

error is written

£ i
- S, . 21 121
€gr = LSN - AYA = 20 1og10 lm . f;——
21 21
£ £ £ f
(I - "y Ty (@ + "mpaTpy) - Pyp M ToanTL (6.72)
* 20 logy, I I T 1 :
(1 - "oy T (- nppTiy) - "y Moy Tenin



where the m's and n's are the scattering coefficients of the composite two-ports in
figure 6-17 and it is understood that system M represents the idealized, and system
N the actual system. The first term in eq. (6.72) vanishes if connectors H

are standard, for then 'M = lN, and fM = fN. The second term vanishes if the reflec-

G and HL

tion coefficients T and FLN of the actual system vanish.

GN
In order to calculate a simple example, let the second term above vanish and
assume that only the connector HG is nonstandard. Then two-ports A, C, E, F, K, and

Q are alike and represent standard connector pairs and two-ports G and P are alike

and represent nonstandard connector pairs. The first term in eq. (6.72) can be

written
£ i
m n
21 21
20 logygly— * ¥
M1 Moy
= Ap b Ag - Ag - Ay s Ap e Ap - A, A
(1 - eppdyd @ - Jppfyg) - eppdipdp gy
+ 20 log10
(1 - 2y5b93) (1 - by,e97) - agybybyicyy
(1 - Py,by) (1 - bysayy) - p,,bo b, g
11 11
- 20 1o, . 22 22212°21%1 | (6.73)
SRS PSS DAC R PYLSER I -PO5 FPS PSS S

Applying the above assumptions, the right side of eq. (6.73) reduces to just its last
two terms. Assuming that reflections are small and neglecting the smaller terms, as
in obtaining eq. (6.65), the last two terms of eq. (6.73) become

20 Togygll + G908, - €pp) * dpy(kyy - £97)

T J123210800k 1 - ey fy) |

" 20 Togggll # by (35, - pyp) + bypleyy - apy)

MRS PLP ST PR SYCIEP AR (6.74)

Example 3
Suppose that the initial attenuator is a 3-dB pad having a kernel VSWR = 1,222,
the final attenuator is a 10 dB pad having a kernel VSWR of 1.15, the standard con-

nector pair VSWR's are 1.15, and the other connector pair VSWR's are 1.00. Thus

H

0.1, [b, = 0.1, ]blll = |b,,| = 0.07,

13023511 = 0.5, [igy] = 13y, 2P21 |
Iazzl = !Clll = lczzl = |f11| = lklll = lqlll = 0.07, and 'gzzl = |p22| = 0.
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Neglecting reflections, it is seen that the attenuation of the cascaded two-
ports A, B, C, and P would be obtained, provided that D = Q. The attenuation of A and
B together would be nearly characteristic of the waveguide component itself, so that
the attenuation of C and P together would need to be determined and subtracted. If
reflections were taken into account, it would be even mote difficult to obtain the
desired characteristic loss from the measured substitution loss.

It is concluded that unless the adapter is to be permanently attached to the
waveguide component, this insertion arrangement does not directly yield the desired

information.

Exampie of Case 2A,
Connectors Same Type

R
R
800095
LS
IS

Be 1 2
| DgiDL |
i e
[l 1
N _/ —
Initial 2 - Port
oo o T T e - Attenuator Adapter
Example of Cose 3A, N b vl 2 2
Connectors of Different Types 1 OciBs By }Ps P !
Og 2 de e a]
B T 7 !
s P ' b
‘a3e%%% |
Sae Finol 2~ Port

Bg B P

Figure 6-18. Representation of insertion of a waveguide component (such-as an attenuator)
having nonmating connectors by connecting it to an adapter (Cases 2A and 3A).
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Figure 6-19. Representation of insertion of a waveguide component (such as an attenuator) having
nonmating connectors by substituting it for an adapter (Cases 2B and 3B).

(2) Cases 2B and 3B -- Substituting the Component for an Adapter

The same basic representation shown in figure 6-19 applies analytically to either
Case 2B or 3B as one can see from the examples given. The example of Case 2B is
especially familiar as the drum or turret-type step attenuator. The attenuation steps
are usually referred to a '"zero dB attenuator" which is an adapter designed to have
nominally no lass. This example has already heen analyzed in the section on the
variable attenuator in two systems as represented by figure 6-17. It is apparent
that calibrations of such an attenuator in different systems may not agree if the
connectors at the insertion points are different. To avoid such a possibility, it
is advisable to make certain that they are identical. This requires standardizing the
design of various types of connectors and then adhering to that standard in their
construction. (In addition, tolerances of construction should be extremely small.)

If one is interested in the change of attenuation of such an attenuator relative
to an adapter, then the design of the adapter should also be standardized and the

adapters should be constructed according to this standard design.
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If one is interested in the attenuation characteristic of the attenuator itself,
this insertion arrangement will not give direct information. Instead, additional
calculations would be necessary after having first determined the characteristics
of the adapter and connector pairs used. It will be found that Case 2C is a better
arrangement for the above purpose.

Case 3B is similar to Case 2B except that the waveguide component such as an
attenuator has nonmating connectors of different types, and the adapter for which
it is substituted must also have corresponding types of connectors. This case occurs
in practice for example if one desires to measure the coupling of a directional
coupler by measuring the attenuation between two arms, the other arms terminated.

The side arm in some cases may have a different waveguide than the main arm so that
the connectors are of different types.

In using the substitution arrangement of figure 6-19, one can determine the
attenuation relative to a given adapter, which must be standardized if the measure-
ment is to be repeatable and significant. No direct information is obtained con-
cerning the waveguide component such as the directional coupler itself, and additional
calculations would be necessary, given the characteristics of the adapter. It will
be found that the arrangement of Case 3C gives better direction information, but

still may not be completely satisfactory.

(3) Cases 2C and 3C -- Combining the Component with an Adapter and Substituting for
Another Adapter

These cases are of interest because the quantity directly measured is to a good
approximation characteristic of the waveguide component alone, and no additional
calculations are required to take into account the adapter. This is true at least for
Case 2C, if not for 3C, for which additional measurements are required.

In the examples of Case 2C, it is seen that if the kernels J and P of the two
adapters are the same, and all of the connector pairs are standard, the measured
substitution loss to a good approximation can equal the attenuation of the kernel B
plus one connector pair. This is characteristic of the waveguide component which
consists of the kernel B plus two connectors. The argument is similar to that
following eq. (6.61), and is subject to the additional assumption here that the
connector loss splits equally between the male and female connectors. A detailed

analysis will not be given, but would follow along lines of those already presented.

247



In the examples of Case 3C, shown in figure 6-20, it is secen that the measured
quantity is not likely to be a good approximation to a characteristic of the wave-
guide component itself as represented by the kernel B and connectors BG and BL'

We would have to assume not only that connector pairs E = A and F = Q (which is
quite reasonable}, but also that adapter kernels J = P, and that the losses in
connector pair C equal those in connectors B, and B; . The latter two assumptions
could be quite unrealistic and not correct to a good approximation.

A combination of Case 3A and Case 3B substitution measurements as shown in
figure 6-21 could be used to obtain more or less directly a quantity characteristic
of the waveguide component itself. It is evident that waveguide components such as
are shown in these examples are troublesome, and require extra effort in their
evaluation. In case that the waveguide component under consideration is itself an
adapter, this technique is of particular interest and deserves further study. A

detailed analysis would follow along the lines already presented.

1. Conclusions

A more rigorous representation and analysis have been presented to enable cal-
culation of the effects of connectors and adapters on accurate attenuation measure-
ments. The measured substitution loss replaces the insertion loss, and the former
mismatch error is replaced by an error having three components. One condition under
which the error vanishes is that the system is nonreflecting and has standard con-
nectors at the insertion point.

A method of obtaining the nonreflecting condition using a tuning stub and
slotted line is discussed.

The need for use of standard connectors is emphasized by some calculated examples
in which error limits up to 0.13 decibel are obtained when such a connector is
nonstandard. Examples are calculated for both fixed and variable attenuators and
are based upon measured data on type N comnectors.

Situations in which adapters are used in different insertion arrangements are
discussed, and it is concluded that adapters also need to be standardized when used

in precision measurement techniques.
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Figure 6-20. Representation of insertion of a waveguide component (such as an attenuator)
having nonmating connectors by connecting it to an adapter, and substituting
the composite component thus formed for another adapter (Cases 2C and 3C).
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Figure 6-21. Example of arrangement for measuring attenuation
approximately characteristic of waveguide component
of Case 3C.
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Figure 6-22. Nomogram of "Error Limits. "



The form 20 Log,,(1 - [azzbll{) is frequently observed in the error equations.
In order to facilitate calculations, the nomogram of figure 6-22 may be used. The
nomogram gives only error limits assuming that there is some possibility that the
phases of the reflections might combine to produce the greatest effect. In some cases,
the error limits given by this procedure are overly conservative because the varia-
tion of the phases ié limited by realizability conditions (previously mentioned in
section 6.5).

Some basic insertion arrangements are described for waveguide components having
nonmating connectors. The ones giving a measured loss most nearly characteristic
of the waveguide component are singled out for special mention, although a complete

analysis is not presented.
6.7. Efficiency and Attenuation of 2-Ports from Reflection Coefficient Measurements

a. Introduction
It was shown in section 3.13c that under certain conditions,!* the efficiency of
a two-port terminated in a nonreflecting load equals the radius R2 of the Fz—circle
obtained when short-circuit terminations of various lengths are connected to arm 1.

The dissipative component of attenuation equals

= 1
[A;1p = 10 log;, = (3.111)
R
An additional measurement of the VSWR p;, corresponding to Islll of the attenuator
yields the component of attenuation due to reflection
) (pyp + 1?2
[A;]g = 10 log, — = 10 logy, T (6.75)
P11 11

This is similar to eq. (3.66). The total attenuation [Al]T is the sum of [A1]D and
[Al]R' Some measurements using this method are shown in figure 6-23 and results

of some measurements are given in table 6-1.

!%The ‘conditions are (1) short-circuit terminations are lossless, and (2) the
reciprocity condition (202812 = 201821) holds for the 2-port.
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Figure 6-23. Measured reflection coefficients of 20-dB attenuator,
A, = 9.50dB, 1,000 GHz, R, = 0.112,
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Table 6-1. Observed attenuation data.

MEASURED ATTENUATION

Nominal AT From

Input Power |pifference
Value of |yowr | A& % | A | Ratio |

Attenuation Method

3dB 1.070 |.005dB| 287dB| 288dB| 285dB| .03 dB
6 dB L2335 [048 574 |579 |5.75dB| .04dB

10 dB 1.L180 [.030 |950 [953 |9.53dB| .00dB
20 dB .240 [.050 [1I974 1979 1981 dB| .02 dB

In the case of a reciprocal 2-port, the attenuation [AZ]T for energy incident
upon arm 2 equals [Al]T. However it does not follow that [AI]D = [AZ]D and
[Al]R = [AZ]R unless the 2-port is also symmetrical.

The above method for measuring the efficiency of a 2-port terminated in a
non-reflecting load has been described (Beatty, 1950). It has also been shown how
one can obtain from the same data, the efficiency of a 2-port terminated in any
arbitrarily chosen load (Beatty, 1972a). In the following, it will be shown how to
extend this method to the case where one measures impedances rather than reflection
coefficients, and the 2-port may consist of lumped circuit elements and have terminal

pairs rather than waveguide (or transmission line) 1leads.

b.  2-Port having Terminal Pairs

Consider such a 2-port as shown in figure 6-24.

253



— ——
o—-| —
Y1 T T Y2
e — —o
Vi =20k v 250
Vo= 2ol 2550, = 1,2y

Figure 6-24. Diagram of 2-port having 2 sets of
terminal pairs.

For energy incident upon port no. 1 and a load of impedance ZL connected to port

no. 2, the efficiency ny is

T 2
o EE ) [i,] ReZ ) Zyy ReZ;
1 — ,
Py iy ReZ, Zypg * Ll RelZy
or
Z 2 |z;| cos ¢
I L
- 21 , (6.76)
Zyp * Zpl |zy] cos o

where ¢, is the phase of Z, and ¢, is the phase of Z..
L L 1 1

Similarly, for energy incident upon port 2 and a load of impedance ZL connected
to port 1,

Z1, 2zl cos ¢

n, = (6.77)

Lyg + I IZZI cos ¢2'
The method of measuring n, is described as follows. We connect reactive loads
to port 2 having an impedance Ileejﬂ/z. For each load so connected we measure the
corresponding input impedance Zl at port 1. We measure at least three values of Zl’
and possibly 5 or 10 values in order to reduce the effect of random errors.
Suppose that we wish to determine the efficiency n, when a load of impedance Zy,

is coanected to port 1. Let
Iy = ——, (6.78)

where

/2
*lyyZyp t Zyglp

/2
Ixple TP

lelxlleJ




We can write eq. (6.78) in the form

a[xl[ej"/z + b
Pl = _~._J1T‘_7—2——:’ (6.79)

clxlle
where a = le - ZL, b = (le - ZL)Z22 - 212221, c = le + ZL’ and
d = (Zyy * Z)2py - Z3p%90-
We note that eq. (6.79) is a linear fractional transformation and hence, as [xll
varies, Fl has a circular locus of radius
ad - bc 1

C2

R

1 c , (6.80)

21 sin (5 - v - w/2)]
where & is the phase of d, vy is the phase of ¢, and the derivation of eq. (6.80) is the

same as for eq. (3.124) of section 3.14b. We can also write

d - b
R, = |2 - < 1 - (6.81)
c
It can be shown as follows that n, is closely related to Rl' Consider that
- = 2 ; =
ad - bc = 2 szlzzZl =2 2;27, (if Zy9 = ZZl)
2
Z
d . Zy, - 12 Z,, (6.82)
[ Z + Z
11 L
and c = le + ZL.
It follows from eq. (6.77) that
- b 1
n, = |2 — oS b (6.83)
c
or
n, = Ry cos ¢. (6.84)
We note that when ZL is real, n, = Rl‘
In a similar way, it may be shown that
n, = R2 cos ¢L, (6.85)

where '¢; is the phase of Z , the impedance of the load connected to port 1.
L L

c. 2-Port Having Waveguide Leads
If we wish to measure in a similar way the efficiency of a 2-port having wave-

guide leads, it may be more convenient to measure the reflection coefficients



Ty and I, at ports 1 and 2, respectively. Suppose that we have measured Fz at
port 2 for reactive loads on port 1, and have determined
2
. Zo1 5541 (3.29)
R VA PR PY '
! 0z 1

we can process the same data to obtain (Beatty, 1972) Ny for any value of FL (load
connected to port 2).

The procedure is to convert each measured value of T, to a new reflection coef-

2
ficient PZN by means of the transformation
r, - T
r.. = _2 L. (6.86)
Ny ror
2°L
We plot T,y and observe it has a circular locus. We measure the radius Rone

Then we calculate

R
n =\/ ZIPiNSin wLI =, (6.87)
1+ |——————
S
where vy, is the phase of PL.
In a similar manner, it follows that
= ‘v (6.88)

"2 ” 2|r; sin y,| 2’
1+ L L
1 - Irl?

Although it is assumed that the short-circuited waveguide terminations are lossless,

one could in principle measure the losses and make a correction taking into account

eq. (3.107), for cxamplec.

d. Conclusions
The method of determining 2-port efficiencies from the radius of an impedance
circle or reflection coefficient circle may be applied to reciprocal 2-port networks
having either terminal pairs or waveguide (or transmission line) leads. The method
is not recommended for determining attenuation if conventional attenuation measuring
equipment is available, but is useful for determining efficiencies. If more than
3 measurements are made to determine a circle, then the accuracy can be better than

that for 3-point methods, at the cost of additional measurement time. "
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6.8. Attenuation from Power Measurements

a. Introduction

In the measurement of microwave attenuation, the stability or resolution of the
measuring system places a limit on the accuracy. Reduction of the other sources of
error (such as mismatch) will tend to make the error 1limit approach the system
instability limit. 1In practice, this limit has been typically of the order of
+0.01 dB, for systems in which the generator is not frequency-stabilized.

In the following, the application of amplitude stabilization and accurate power
measurement techniques to the problem of attenuation measurement is described. A
measurement system having a stability and resolution of the order of *0.0001 dB was
obtained. This system was used to calibrate a rotary vane type of variable micro-
wave attenuator, which has a high degree of resolution for small vatues of attenuation.

In order to take maximum advantage of the improved stability and resolution,
refined techniques were used in the evaluation and reduction of mismatch error. The
capability of the system is indicated by the tabulated results of the attenuator
calibration, and the estimate of the limits of error is supported by an analytic and
experimental treatment. The following discussion is a modified version of Engen and

Beatty (1960).

b. The Measurement System

A simplified diagram of the measurement system is shown in figure 6-25. The
attenuator under test is placed between an ampiitude-stabilized microwave signal
source (Bugen, 1958) and a bolometer mount-power meter. The power meter cousists
of a self-balancing d-c bolometer bridge (Engen, 1957) having provisions for measuring
and recording the d-c hias power required to maintain the holometer at its operating
resistance of 200 ohms. The two bolometer mounts M, and M, shown in the temperature
stabilized water bath are for power measurement and signal source stabilization,
respectively. A reasonable amount of care was exercised in order to obtain good
performance from each item of equipment, with a resultant system performance as shown
in figures 6;26 and 6-27. Figure 6-26 shows the stability and repeatability with
the attenuator alternately set at the 0.00 and 0.01 dB positions. It will be noted
that the stability and repeatability are better than 0.0001 dB (10 microbels). A
recording of the long term stability is given in figure 6-27 where the maximum

variation is of the order of +10 uB.



The accuracy of measurement of small changes in d-c power at this level is
estimated to be of the order of 0.02 uW. This indicates that further improvement
could be expected in the results if the system stability were improved, perhaps

by the use of a frequency-stabilized signal source.

GENERATOR

ISOLATOR

DC
AMPLIFIER

SELF-BALANCING
[— BOLOMETER —
BRIDGE

SELF - BALANCING DC
BOLOMETER BRIDGE
AND DG POWER
MEASURING EQUIPMENT

Il e
RECORDER il LT

__\__ 7
STABILIZED —/

TEMPERATURE TUNABLE BOLOMETER MOUNTS
WATER - BATH

|

Figure 6-25. Simplified diagram of measurement system.
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Figure 6-26. System response to a 0. 01 dB attenuation.
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c. Theory of Measurement
One can make an attenuation measurement by medsuring the microwave powers P, and
P, absorbed by the bolometer mount My when the attenuator is set first on zero, then

to some other setting. The attenuation is

Pl
A =10 1og10 —. (6.89)
P

2
It is of course necessary that the interaction of reflections between the
attenuator and the measuring system is negligible.
In making such a measurement, one assumes that the microwave power P absorbed by

the bolometer element is proportional®® to the d-c power required to bias the bolometer

at its operating resistance when P = 0. Then,

Wo =Wy
A =10 log,, ——=, (6.90)
10 W. - W
0 2
where W1 and W2 arc the d-c bias powers corresponding to P1 and PZ' (For the bolometer

used, W0 = 15 mW and Pl = 10 mW.)

Figure 6-27. Long-term system stability.

The apparatus employed permitted direct measurements of differences in d-c power,
a procedure permitting greater accuracy and convenience than calculation of dif-
ferences from separate measurements., The changes in d-c power level during an

attenuation measurement are shown in figure 6-28.

15The constant of proportionality is determined by the substitution error of the
bolometer which is known from previously obtained experimental data to be independent
of power level.

259



(W,-W))
0”2
W, W " 1
l ool
(WQ'Wﬂ
2w _J‘”_Z_ll S
e ot = I I
g M P J g A
e ' ! (Wa-w)) ) J
I : ! I
1
: T TIME T | TIME
1 1 . ] |
stnumn SET T0 meumon SET 10
LESS THAN 3DB GREATER THAN 3DB
ATTENUATOR SET TO ZERO ATTENUATOR SET TO ZERO
MICROWAVE POWER TURNED OFF MICROWAVE POWER TURNED OFF

Figure 6-28. Changes in d-c power level during an attenuation measurement.

For attenuations less than approximately 3 dB, the power difference WZ - W1 was
measured directly. If we let W21 = W2 - Wl, and W01 = W0 - Wl,_eq. (6.90) becomes

A = 10 log ,|—1—]. (6.91)

|
o1

For attenuations greater than approximately 3 dB, the power differences W01 = W0 - W1

and WOZ = W0 - W2 were measured directly. Then the attenuation according to eq. (6.90)
becomes
w
A= 10 log, iy (6.92)
Wo2
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d. Propagation of Error in Measuring d-c Power Differences
It is estimated that the error in measuring d-c power differences is within 0.1
percent +0.1 uW. When W2 - WZ is measured, it can be shown that the limit of error in

determining the attenuation is

1
e = 10 logy, , (6.93)
1 [0.1 uW 21
1 - + 0.001 &
L' Vo Wo1
-
01
and when W2 - W0 is measured,
- 1 ! )
e =10 log10 . (6.94)
0.1 uW + 0.001. W
1 02
) W
02

The calculated limits of error are shown in figure 6.27.

e. Mismatch Errors
The mismatch error (Beatty, 1954) in calibrating a variable attenuator depends upon
the reflections from the system in which the attenuator is placed and upon the changes
in characteristics of the attenuator as its dial is moved from the reference position.
The graph of figure 6-29 shows calculated limits of error for the attenuator used,
based upon measurements of the magnitude of the changes in the scattering coefficients
S and S

11
in 521. The mismatch error is below 0.0001 dB for attenuator settings up to 0.1 dB,

22 of the attenuator. It was assumed that there was negligible phase change

and remains below 0.001 dB for higher settings.
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f. Results
The calibration data taken at 9.3897 GHz is shown in table 6-2. Three sets of
data are shown in order to give an idea of the resettability of the attenuator, and
more significant figures are given than one can normally use when interpolating

between the marked dial divisions.

Table 6-2. Results of three sets of measurements and calculated limits of
error in single measurements.

Attenuator Measured Attenuations Maximum Calculated Limit
Dial Corresponding to Dial Reading Deviation of Error in Single
Reading 1 2 3 Average From Average Measurement
dB dB dB dB dB dB dB
.01 . 01077 . 01083 . 01044 . 0107 0. 0003 . 000055
.02 .02123 . 02145 . 02145 . 0214 0. 0002 . 000068
.03 . 03015 . 03035 . 03038 . 0303 0. 0001 . 000080
.04 . 04043 . 04088 . 04074 . 0407 0. 0003 . 000091
.05 . 05181 . 05216 . 05226 . 0521 0. 0003 . 00010
.06 . 06102 . 06067 . 06086 . 0609 0.0002 . 00011
.07 . 06992 . 07027 . 06985 . 0700 0.0003 . 00013
.08 . 07991 . 08056 . 08017 . 0802 0. 0004 . 00014
.09 . 09075 . 09104 . 09078 . 0909 0. 0001 . 00015
.1 . 10226 . 10203 .. 10210 . 1021 0. 0002 . 00014
.12 . 11886 . 11884 . 11951 . 1191 0. 0004 . . 00019
.14 . 13681 . 13760 . 13819 . 1375 0. 0007 . 00021
.16 . 15737 . 15765 . 15703 . 1573 0. 0003 . 00024
.18 . 17806 . 17792 . 17888 . 1783 0. 0006 . 00026
.2 .20071 . 20089 . 20041 . 2007 0. 0003 . 00029
.25 . 24702 . 24709 .24724 L2471 0. 0001 . 00035
.5 . 49799 . 49762 . 49795 . 4979 0. 0003 . 00065
1 1. 0037 1. 0037 1. 0037 1. 004 0. 0000 . 0013
2 1.9954 1.9972 1.9948 1.996 0. 0010 . 0029
3 2.9968 2.9975 2.9993 2.998 0. 0015 . 0047
5 4.9841 4.9923 4.9927 4.990 0. 006 . 0048
10 9.9624 9.9671 9.9647 9.965 0.003 . 0053
15 14,991 14,988 15. 001 14.99 0. 000 . 0063
20 19.963 19.956 19.945 19.95 0.01 . 0093
25 24.999 25.031 24.987 25.01 0. 02 . 014
30 30. 080 30. 049 30. 074 " 30.07 0. 02 . 015
40 40. 354 40,281 40. 367 40.33 0. 05 .02
0.20 .06

50 52.338 52.041 52.336 52.24

The estimated limits of error for the complete range of the attenuator, as
determined from figure 6-29, are also shown in table 6-2. Above 20 dB, the cali-
bration was made in two parts: Measurement of the 20 dB step, and measurement of
the additional attenuation referred to this step. For these values, the quoted
limit of error is the sum of the errors in the individual steps. The accuracy

of carefully setting the attenuator dial on the marks is not as good as the

accuracy of the measurements.
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It is noted that even at the low end where the resolution is approximately
0.0001 dB, the estimated accuracy of the measurement is also better than the
repeatability of setting the attenuator on the mark. As a result of this work,
it was evident that attenuators needed improvement if full advantage was to be
realized of the accuracy available. Such improvements have been recently reported

(Little, et al., 1971, Warner, et al., 1972).

g. Analysis and Evaluation of Mismatch Errors

The analysis of mismatch errors in the calibration of variable attenuators
(Beatty, 1954), yielded uan equation for the error in terms of the scattering
coefficients of two fourpoles corresponding to two settings of the attenuator dial,
and the reflection coefficients of the system in which the attcnuator was placcd
(see section 6.4e). The measurement of all of these quantities may be tedious or
difficult, and to avoid this, an approximate method has been developed. One obtains
reasonably close limits within which the error lies from a fairly simple experimental
procedure.

The complete expression for the mismatch error is adapted from eq. (6.47) and
is
(1 - ST - Sp,T) - (S37)%TgTy
(1 - S13TE) (1 - 8,,Ty) = (5,)°TgTy |

e = 20 logyg (6.95)

where scattering coefficients are denoted by Sll’ SlZ’ 821, and 522; and Tes T
represent, respectively, the reflection coefficients of the system "looking towards"
the generator and load. Primes are used to designate a setting of the attenuator
other than the zero or reference setting.

For small roflcctions, the following expression was derived from eq. (6.95)

t t 1 1 1
~ - - - - - - 2 2
€ = 20 logyg|1 - (S11-811)Tg = (S597S5)Ty *+ [81985575118757(S51) %485, %16l . (6.96)

S' and

If the attenuator VSWR is not much greater than unity, the products S11 22
811822 may be neglected. Then eq. (6.96) becomes
A} ] ]
Po= 20 Tog |1 + (S-S, )T + (S,,-8,,0T, + [5212-(821)2}I‘GFL[. (6.97)

It is convenient to determine the magnitudes of the individual terms but not
their phases, so that the limit of error, allowing the phases of Sll and 522 to take

on any values (but the phase of 821 is assumed constant) is

t 1] ]
e = 20 log;,[1 + lsll-sll||rG| * 185578, Tl + (1857121851122 T 11 (6.98)
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The quantity IS11 - S;ll is determined as follows. With the attenuator under
test connected as shown in figure 6-30, and set to its zero or reference position,
tuner A is adjusted for a detector null, and tuner B is adjusted until the reflection
coefficient Tos of the equivalent generator at terminal plane 2 vanishes. (This

condition may be recognized by means of an auxiliary reflectometer).

DETECTOR
31 iny)
TUNER TUNER
1B < w2 £ NON-REFLECTING
L 0L 8 FTINT] L - -
GENERATOR f—t-tuuitt y i ATT 1 TERMINATION
Li "L/

Figure 6-30. Schematic diagram of system for measuring |Su - s'u].

Movement of the attenuator dial to some other setting will then give an
observable output. Using the theory of a directional coupler having auxiliary
tuners (Beatty and Kerns, 1958) one can obtain ]Sll - Sil[ in the following way.

The magnitude of the wave emerging from the side arm of the directional coupler
in figure 6-29 is

1 + KPL

[bs] = k s (6.99)

- Tyl

where k is a constant for a given stable generator operating level,

With the attenuator set first on zero, ry = Sll' Adjusting tuner A for b3 =0

changes K so that KS11 = -1. Adjusting tuner B for FZi = 0 makes the dependence of

lBSI on Tp simply

: Iy,
[bg] = k{1 - —. (6.100)

S11

Suppose that the attenuator dial is moved to a new position such that Iy now equals

S:;.l; then

1

s .
11 k

= [S11 - S11l- (6.101)
I811]

1 -

S11



The factor k/}S is-obtained by replacing the attenuator with a waveguide section

11l
containing a sliding short-circuit. Upon sliding the short, ]b3] goes through small

variations so that one may observe ‘bs‘max and ‘bslmin‘ It is easily shown that
k _1
IS, N ;(lbslmax * Ibglpgn) - (6.102)
11
One can assume that |bg] = |bglyi, and employ a tixed short-circuit with negligible

max
error if the VSWR corresponding to ]Slll is less than 1.15. It may be that this error
is also tolerable for higher VSWR's since it is not important to know ’Sll - Si1| to
great accuracy.

The quantity |S,, - S;2| is found in the same way as above with the attenuator

turned end for end.

6.9. Two-Channel Nulling Method

We introduce a new technique to measure the attenuation constants of short sections
of waveguide and the losses of waveguide joints.!®

The measurement method is described with reference to figure 6-31 which shows a
two-channel system. The test section of waveguide is placed in the lower channel
in such a way that the microwave energy traverses it twice, being reflected from a
short circuit. The energy then passes through a level-set attenuator and is combined
with energy from the upper channel which contains a direct-reading attenuator and
phase shifter. Upon adjusting the upper channel to obtain a detector null, the
losses in the two channels are equal. It is apparent that one can measure the loss
in the test section of waveguide by observing the difference in attenuator settings
to obtain nulls with the test section inserted and then removed from the circuit.

The main difference from previous methods (Altschuler, 1963) is that no special
items of equipment are needed such as precision-sliding short circuits or special
amplifiers. Only stock items of commercially available equipment are used, such as
are encountered in most measurement laboratories. The main disadvantage of the method
is the necessity for making four to seven measurements at slightly different fre-
quencies each time an attenuation constant is desired. This procedure reduces errors
from several troublesome sources, leaving the uncertainty of the reference aftenuator

as the major source of error. If one uses a good commercially available rotary-vane

18This discussion is a modified version of Beatty (1965).
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attenuator with 0.01-dB divisions at the low end of the scale, and uses a
superheterodyne receiver as a null detector, one can expect a resolution and
repeatability of # 0.001 dB, and an accuracy of perhaps + 0.002 dB without cali-
brating the attenuator.

Details of the measurement procedure are as follows:

1) Compute an operating frequency such that the length of the test section of
waveguide is an integral number of half-guide-wavelengths. Calculated frequencies
for a 10.537" test section of WR-90 (X-band) waveguide are shown in figure 6-32,

2) Set the signal source and the receiver to one of these frequencies, and
set the adjustable short circuit to be a quarter-guide-wavelength (AG/4). This is
conveniently done by using the direct-reading phase shifter to obtain nulls when first
a flat plate, and then the adjustable short circﬁit, are placed, in turn, at terminal
surface "T." The short circuit is adjusted until it requires a change of 180° of
the phase shifter to restore the null.

3) With the XG/4 short circuit at terminal surface "T," and the direct-reading
attenuator set on zero, adjust the level-set attenuator and the phase shifter to
obtain a detector null, or "initial balance.”

4) Insert the test section of waveguide as shown and adjust the direct-reading
attenuator and phase shifter to restore the detector null or to obtain a "final
balance."

Note that if the frequency selected were exactly right, insertion of the test
section of waveguide would have introduced no phase shift, and it would have been
unnecessary to change the phase shifter in going from initial balance to final balance.
The measurement of attenuation constant would then be completed by dividing the reading
of the attenuator by two, and then dividing this result by the length of the test
section of the waveguide.

In practice, one cannot predict the required frequency exactly, and must approach
it by trial and error, in the manner indicated by figure 6-33. The phase shift to
restore the null is plotted vs. the frequency. At the crossover frequency, this
phase shift is zero and the attenuator reading is then the correct one to use. If
the foregoing procedure is not followed, it will usually be found that serious errors
are introduced by the change in signal level caused by the change in the phase shifter.
The reduction in phase shift in this manner also reduces error due to changes of

reflection interactions between the short circuit and the system. These changes
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occur when the test section of waveguide is inserted. The use of a quarter-guide-
wavelength short circuit and an N(AG/Z) test section of waveguide makes the losses
in the waveguide joints negligible, since current flow across the joining planes is
reduced to zero. (N is an integer.)

The change of the direct rcading attenuator causes a corresponding change in
phase-shift which affects the abovg results. However, in a typical commercially
available rotary-vane type attenuator, such phase shifts are certainly less than one

degree and can be safely neglected.

SIGNAL
SOURCE
l NULL
tSOLATOR DETECTOR
W
: - -DIRECT-
10dB )(‘ DIRECT READING ><I'j 348
READING
VARIABLE
VARIABLE PHASE
ATTENUATOR SHIFTER
LEVEL-SET | J
10dB XI ATTENUATOR
- TERMINAL SURFACE "T"
R ™ :
TEST SECTION OF WAVEGUIDE
A6 '
4 /
SHORT
CIRCUIT
Figure 6-31, Simplified diagram of measurement systeuan
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WAVEGUIDE JOINT

UNDER TEST
1 _Jt 3
r i H
==
5
o L i
| X6 (INCHES)
NUMBER OF INCHES] | FreQUENCY
)\G IN L L= 10.537" GHz
4.5 2.340 8.27
5 2.107 8.62
5.5 1.915 9.00
[ 1.756 9.39
. 1.621 9.80
7 1.505 10.22
A 1.405 10.65
8 1317 i.10
8.5 1.239 11.56
9 1470 12.02

Figure 6-32. Arrangement of waveguide joint for measurement
of its loss, and calculated crossover frequencies
for X-band (WR-90) rectangular waveguide.
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Figure 6-34. Plot of data to obtain maximum loss vs. frequency of waveguide joint.

TWO-WAY LOSS, DECIBELS

The loss in the waveguide joint can be measured by the same method. Instead of
using a continuous section of waveguide as the test section, one uses two shorter
sections which are joined by the waveguide joint under test. The overall length of
the resultant waveguide is equal to the length of the single continuous section
which it replaces. Assuming that the waveguides have the same attenuation constant,
the increase in loss of the joined sections over the continuous section of the same
length 1s caused by the loss in the waveguide joint. Maximum loss occurs when the
test joint is an integral number of half-guide-wavelengths from the short-circuiting
plate of the short circuit. One divides the maximum loss by four in order to predict
the loss of this joint when used in a nonreflecting system.

A number of variations of this technique have been devised. One that is
convenient is illustrated in figures 6-32 and 6-34. Note that the test section of
waveguide is an integral multiple of half-guide-wavelengths at a number of

frequencies, as shown in figure 6-32. At some of these frequencies the
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test joint is located an odd number of AG/4 from "T." Thus, its loss is negligible

at some frequencies and maximum at others. A plot of the two-way loss through the
test section of waveguide at the various crossover frequencies is shown in figure

6 34. The lower points lie on a curve of attenuation vs. frequency fur Lhe waveguide.
The vertical distance between this curve and each of the upper points is the

"maximum' loss in the waveguide joint. One divides these by four to obtain the

losses of the waveguide joint when used in a nonreflecting system.

6.10. Attenuation Divider Circuit
A circuit has been investigated (Beatty and Fentress, 1968) which divides by

a known ratio small attenuation and phase shift changes of variable attenuators and

/ /
Side Arm | ’
K , 6 Af

Input 4 / Output

) /

Ac As

- b ———-

/ +b>
Main Arm / 2

— s - ] - —

Figure 6-35. Basic attenuation divider circuit.

phase shifters. For example, attenuation changes of 0.01 dB of an attenuator can be
made to produce accurate changes of 0.0001 dB in the circuit output. The attenuator
application will be described first.

The circuit employs variable attenuators and a phase shifter as shown in
figure 6-35. It is assumed that adjustment of the attenuators produces negligible
differential phase shift and that adjustment of the phase shifter prodices negligihie
change in attenuation. These requirements are closely met by commercially available
1ttenuators and nhase shifters of the rotary vane type. The basic principle is as
follows: A rractiun or the energy in the main arm is routed around a side arm and

recombined in phase with the energy in the main arm. An attenuator AF in the side
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arm then produces a change in signal level which has a reduced effect on the circuit
output. A phase shifter is necessary to produce the correct phases for addition of
the signals from the two channels. A level-set attenuator ALS is employed to obtain
the correct ratio between the signals.

The basic theory is as follows. Consider the wave amplitude components bM
and bs from main arm and side arm, which combine at terminal surface 2 (the
output). Assume that [b_| = (1/K)[by|, where K is the ratio of division which
results mainly from the decoupling of the side arm from the main arm.!’ Initially,

before any change in AF’ the circuit output level is

i i
['o,1 = byl + 176 ], (6.103)

assuming that bM and 1bS are in phase. A change of AAg dB in AF produces a change

in |b | according to the relationship

i,
S
%

S

T 20 10g10 = 20 10g10(1 + 8), (6.104)

where the front superscripts denote initial and final conditions, respectively.
For small AAF, we can write the following approximate expression:

AAL ¥ 8.686 & dB. (6.105)

The change in decibels of the output circuit level is

i i
b [oyl + [7bg]
A = 20 log,, ¥E£ = 20 log,, TEMT_:_TEEET = 20 log,, ——E-i—%——. (6.106)
2 M s K+ 15
This can be written
= 1 = K+ 1
- Da s K+ 10

When AA_ is small, § is small, and the following approximatation gives accurate

F
results:

1M

(6.108)

WA = 20 10g10[1 v 8 ] 2 8.686
K+ 1

17The ratio K depends upon both the coupling ratios of the two directional couplers
and the difference in loss between the main arm and the side arm. The latter is
strongly influenced by the amount of level-set attenuation remaining after adjust-
ment. It is desirable to keep the loss in the main arm, and hence the transmission
loss through the circuit, low by 1) choosing the coupling ratio to give nearly the
desired ratio A, as recommended, or 2) using say 3-dB couplers and installing
attenuators in both arms, increasing the one in the side arm, in order to obtain
the desired ratio.
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The percent error in calculating AA from eq. (6.108) rather than from eq. (6.107)
is shown in figure 6-36. It is seen that the change in AAg is divided by the factor

K + 1, which can be controlled as follows.

|00_ i I Illlll! T T !II(II' i 1 llllllloo

-

B AA Kt
o L Note: pgy E* 20Log,0( o
= N K_-l_- g
£ =
T {4 &
© 2
S o
E w0 —n E
b3 ~ - x
o n ] o
& T 1 &
T 7 1 <
[
=2 L =100 1 =
< <
< <
c =10 <
PO =1

— (o]
e f 5
L:i B - [F3
£ | 1 €
a Q
l i j .
ol 1 11 1111 L 1 i ! o.l
0.01 0l | 10

Change AAg of Vernier Attenuator -Decibels

Figure 6-36. Percent error in calculating desired attenuation AA
using approximate formula AA = M:/(K * 1).

Suppose that we wish to make K + 1 = 100. This requires the side arm contri-
bution [b | to be %g of [by|, or 39.91 dB down. We choose two 20-dB couplers'’ to
connect the side arm to the main arm and get a bit more decoupling than we need.

The exact ratio of [b | to [bMIFis obtained with the level-set attenuator by the
following steps: 1) Adjust ALS and the phase shifter to obtain @ null output. Then
N

by = - "b.. 2) Change the phase shift'® by 180. Then by = 'b

s» 3) Reduce Arg by

39.91 dB, reducing ]Nhsl to Ilhsj = ]bM|/99. The circnit is now adjusted ta give

the required division ratio.

!8The circuit will operate a bit more accurately without this step, but eq. (6.108) then
becomes AA # -AAg(K - 1). An increase in A, then causes a decrease in the circuit
output, which is awkward in some applications.
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This circuit has been found useful for producing and measuring small attenuation
changes when available attenuators do not have sufficiently low ranges. (Many variable
attenuators have a minimum dial marking of 0.05 dB or 0.01 dB.) The circuit gives
fine control which is often important in adjusting null circuits. The circuit can
function as an attenuation vernier. (One can set AC to an exact dial division much
more accurately than one can estimate between divisions of AC.) The circuit can also
function as a step attenuator by switching off the side channel after adjustment. The
attenuation change is 20 loglo(l + 1/X). This procedure may be used to check the
circuit adjustment. Another check consists of balancing a change of Ap against a
corresponding opposite changevof A

In order to obtain good accuracy, rotary vane attenuators are recommended because
they produce little or no change in phase shift. When adjusting thc phasc shift!?®
180°, any change in signal level which it produces will cause error in setting the
desired ratio. This is normally small for rotary phase changers and can be reduced

by determining the change and readjusting A accordingly. Typically, changes in

LS
signal level will be less than * 0.2 dB, corresponding to changes of less than
2.4 percent in the dividing factor. It is good practice to employ isolators having
low VSWR on each side of the attenuators and the phase shifter. With calibrated
attenuators, the accuracy of this attenuation divider circuit can be very godd.

The application to division of small changes of phase shift is similar. The

circuit adjustment is the same, and the desired differential phase shift ¢ is obtained

in terms of the change 6 in the vernier phase shifter by the following expression:

6 = tap t[—sin o )} (6.109)
K £ cos o

where one uses the + or - sign according to whether the signals from the two channels
are in or out of phase, respectively. For small changes in phase, one can use the

approximate formula

D

©-
e

. (6.110)
Kz1

The error in using the approximate formula is shown in figure 6-37.
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Figure 6-37. Percent error in calculating desired phase shift
% using approximate formula & = 8/(K % 1).
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7. Phase Shift

7.1. Introduction

Prior to 1963, little attention was devoted to the subject of phase shift
measurements and standards. However, the increased use of phased array antennas
led to greater interest and basic microwave phase shift equations were published
(Beatty, 1964d). In section 3.10, fundamental definitions of phase shift were
briefly given. These are applied to a 2-port model in section 7.2, which is
an extended version of the above referenced work.

A.standard phase shifter was devised by loading a tuned reflectometer with a
sliding short-circuit in a precision section of waveguide. The phase of the
roflcctomctcr output tracks the position of the short circuit and can be accurately
calculated for any frequency of operation. Errors due to imperfect tuning,
limensional variations of the waveguide, etc. were analyzed (Schafer and Beatty,
1960). The analysis of errors is described in section 7.3.

The final topic is the development of a standard differential phase shifter

3eatty, 1964e) which consists of two tuned reflectometer phase shift standards
aving ganged short circuits sliding inside waveguides of different widths.

his topic is discussed in section 7.4.
7.2. Phase Shift Equations

a Introduction

In section 3.10, the phase of a sinusoidally varying quantity was defined
and the phase shift of voltage, current, or some other quantity associated with
a 2-port was discussed. Three kinds of phase shift (1) transmission, (2) sub-
stitution, and (3) differential phase shift were defined.

In the following, circuit theory developed in chapter 3 is applied to the
development of phase shift equations for 2-ports. Impedances, admittances, and
scattering coefficients are used in the equations. By means of these equations,
one clearly defines the quantity to be measured and can evaluaté some errors due
to assumed conditions not being completely satisfied. In addition, the concept

of an ideal phase shifter is clearly explained.



The equations are based upon the representation of a phase shifter by a 2-port
waveguide junction. As mentioned in section 6.6, the effects of comnectors
are neglected when using such a simple model. If extremely high accuracy in
phase measurements is required in the future, it may be necessary to use a better

model.

b General

Several types of phase shift of 2-ports may be considered, as will be shown
with reference to figure 7-1.

The usefulnes§ of the different types of phase shift considered will depend upon
what types of detectors are used in a measurement of phase difference and whether
they respond to wave amplitudes or generalized voltage and current. (An electric
field probe in a slotted line would respond to v, for'example.)

In figure 7-1, the terminal surfaces 1-1, and 2-2, in the waveguide leads
of the 2-port, are the places where the complex amplitudes a and b of the incident
and emergent voltage waves, and v and i, the generalized voltage and current,
(Kerns, 1967) are to be considered. The assumptions inherent in this representation
of a 2-port, such as single-mode propagation in the lossless waveguide leads have

been set forth by Kerns, (1967).

1 2
by a,
T, «—4——~T, =2 T, =2
6 (it bs
-y [Pyp—
Su Si2
vy Vo
S2i S22
—-—.Gl an——
by = Db>
1 2

Figure 7-1. Representalion of a 2-port, showing two sets of
terminal variables.
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The relationship between the two sets of terminal variables is as follows.

a+ b} (2.33)
=a-b

i

v
201
The amplitude bG of the generator wave, ap, bl’ and FG are related by the

following equation:

a; = bg + bl (3.32)

One can consider the phase shift of the 2-port to be the difference in phase
between v, and Vi, between i2 and il’ between bZ and a;, or between bZ and bG’
for example. "The phase shift of a 2-port" may, therefore, be a misleading and
ambiguous expression, since it seems to imply either that there is only one,
or that all phase shifts of a given 2-port are the same. In the following,
equations will be given to show how these various phase shifts will differ in
general, and under what conditions some of them may be the same.

The equations will be given for the case of a linear 2-port (which may be
nonreciprocal) inserted into a system in such a direction that a generator feeds
arm 1 and the load tecrminates arm 2. For simplicity, the symbols such as by for
phase shift do not indicate that this direction has been chosen. One can easily
obtain the corresponding phase shift for the opposite direction of energy flow thru
the 2-port by interchanging subscripts 1 and 2 in the equations.

S Zn,S will

01°217 “02°12
hold, where Zo1 and Lo, are the reference impedances chosen for waveguide leads

If the phase shifter is a reciprocal one, the condition Z

1 and 2 of the 2-port. Very often, 201= ZOZ’ and the reciprocity condition is
written 521= 512. This condition may be substituted into the phase shift equations

in order to reduce the number of variables by one for a reciprocal 2-port.

c Phase Shift Equatiomns
The derivation of the following expressions for phase shift will not be given,
as they follow from straightforward algebraic manipulation of egs. (2.33) and

(3.32): and the scattering equations of the 2-port.

by = Sy13; * 512 -
by = 5512 * 8y
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(1) Phase Shift of v

The transmission phase shift of v, denoted by wv’ may be written as follows

v S,. (1 + 1)
wv = arg 2 - ar 21 L
vy (T #5190 = 8y,Ty) * 515507,

(7.1)

This phase shift depends upon the reflection coefficient of the load as well
as upon the characteristics of the 2-port. When the load is nonreflecting,
521

—_— (7.2)
1+ S,

[wv]r =0 = arg
L
If one employs the impedance matrix instead of the scattering matrix of the 2-port,
the equations corresponding to eq. (7.1) and to eq. (7.2) are

P

wv = arg 21°L (7.3
211 (Za2 * 21) - Z2n
and
Z
w1, ., = are 21 . (7.4)
L 212(Zg2 * 1) - 2350y
where normalized impedances are used. For an open-circuited phase shifter,
Z
21 '
[,]; . = aTg —=. (7.5)
M z
11
(2) Phase Shift of i
Proceeding in a similar way, the transmission phase shift of i is
-i S,,(1 - T;)
¥; ¥ arg — = arg 21 L . (7.6)
iy (- 5100 = 8y,Tp) - 5q,8,7Ty,
When the load is nonreflecting;
S
21
[v;1. ., = arg —=——. (7.7)
1°T.=0
L 1 - S11

If one employs the admittance matrix instead of the scattering matrix of the

2-port, the equations corresponding to eq. (7.6) and to eq. (7.7) are

Y, Y
2171
¥ = arg , (7.8)
Y120 * YD) - Yy,Y0




and

a1
[wi]Y =1 - arg - > (7.9)
L Y93 0a2 + 1) - Yp¥y
where normalized admittances are used. For a short-circuited phase shifter,
Y
H"i]Y o arg[- -A]. (7.10)
L Y-
11
(3) Phase Difference Between b2 and a;
One can see by inspection of the scattering equations and figure 7 1 that
b S
2 21
lpbz,al = arg — = arg * (7.11)
a; 1-5,,T,
When the load is nonreflecting,
(¥, ,a, 10 =0 = 278 821 = ¥g- (7.12)

This phase shift is particularly interesting because it is simply the phase vy of

the scattering coefficient 821, a fundamental characteristic of the 2-port.

(4) Phase Difference between b2 and bG

It is clear from eq. (3.32) that the generator wave bG does not, in general,
have the same amplitude as the wave incident upon the 2-port in arm 1. The phase
difference between b2 and bG is therefore of interest and may be written

b S

2 21
Yy b, = 3T& — = arg , (7.13)
2’76 bg (1 - ST (X - Sy,T) = 89,8576l
or
s
Yy, b, = 3TE = 21 . (7.14)
2:%¢ (1 - TgM) (A - S,,Tp)

This phase shift depends upon the reflection coefficients of generator and load as
well as upon the scattering coefficients of the 2-port. When only the load is nonre-

flecting,

(v 1 = arg ___EZE____ (7.15)
bysbg I =0 1- 5,7, :



When only the generator is nonreflecting,

S

21
Wy b dr =0 = aT8 ————— (7.16)
2°°G "G 1 - SZZTL
When both generator and load are nonreflecting,
[‘pbz’bG] G:I‘L=O = a‘rg SZI = q)zl' (7-17)

It is observed that this is the same result as eq. (7.12) and is of special
interest for the same reason thgt eq. (7.12) is of interest.

The phase difference between b2 and bG may be expressed in terms of two components,
(1) the phase difference between ay and bG’ and (2) the phase difference between

b2 and a; as follows.

b b a

2
[Wb b ] = arg = arg 2. 4
2°°G bG ay b

G] " Yogeay T Yy (7.18)

The first of these components is given by eq. (7.11), and the second follows from
subsequent inspection of eq. (7.14).
a
= arg A arg

¥ —
a;,b _
1°7G bG 1 FGF1

(7.19)

Thus, one obtains

¢b2’bG = le - arg(l - SZZFL) - arg(l - rGrl)' (7.20)
This latter expression shows clearly how reflections from the generator and load
can affect wa’bG.

Other phase differences such as between b2 and bl, a, and ay, b2 and vy, etc.,
could be considered, but are perhaps of less interest than the above examples. Writing

of equations for these phase differences would not be difficult, if they were desired.

(5) Differential Phase Shift

When variable phase shifters are adjusted, onc is intecrcsted in archange p;oduccd in
the phase of v, or b2 at the output waveguide lead of the 2-port as shown in figure 7-1.
For the purposes of analysis, it is convenient to regard a variable phase shifter
adjustment as though one removed an initial phase shifter and substituted a final
phase shifter, even though the variable phase shifter remains in the system at all
times. Using front superscripts i and f to denote initial and final conditions,

respectively, it can be shown as follows that the change in phase of v, produced by



a given change of a variable phase shifter is the same as the corresponding change

in phase of bZ‘ Writing the change in phase

fv2 sz + fa2 sz 1 + fFL
vaz = arg y— = arg y———5— = arg 7— |————|. (7.21)
Vs b2 + Ta, b2 1+ PL
If there is no change in the load, fPL = iFL, and
v o,
vaz = arg T = arg z— = A\sz = Ay. (7.22)
V2 b,

One can now obtain an expression for the differential phase shift, using’

S,.b
b, = 216 (7.23)

’
(1= S1qTg) (3 - S55T1) - S1,8,176T,

and eq. (7.22), and assuming that there is no change in hg, Tg» or r, .

The differential phase shift is

f i i i i
_ 521 (1 - 8117gd (1 - 7S,,T) - Siz Syl
Ay = arg|y . s T o . (7.24)
Sp1 (1= 7Syl (1 - "SgoT ) = 7815781760y,
If only the. generator is nonreflecting
£ i
S 1 - 7-S,,T
[Aw]r -0 = argly 21, T 22’ L . (7.25)
G S21 1 - SZZFL
If only the load is nonreflecting
f i
S,. 1 -1's.T
[89]p o = arg|—2 - 8 (7.26)
L Sa1 1 - "SiTg
If both generator and load are nonreflecting,
fS
- 21 _ £, i
[Aw]rG=rL=0 TAre T~ b1 ¥o1- (7.27)
21 :

(6) Insertion Phase Shift

.When a (final) 2-port is substituted for another (initial) 2-port, a phase shift
of v, or bz occurs at the load. The general expression for the phase shift of b2 is

eq. (7.24). This was shown to be the same for v, as for b,. When both generator and
a 2 2

!This follows from manipulation of eqs. (3.32) and (3.4) substituting a, = bZFL.
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load are nonreflecting the substitution phase shift reduces to the difference
between the characteristic phase shifts of the initial and final 2-ports.

Consider that the insertion phase shift is a special case of the substitution
phase shift, just as it was considered in section 3.8c that the insertion loss is a
special case of sﬁbstitution loss. The special condition is that the initial 2-port
is lossless, nonreflecting, and has zero characteristic phase shift. These conditions

on the scattering coefficients are

is11 = is22 = 0, and is1 is . = 1. (7.28)

2 721
Substitution of these conditions into eq. (7.24) yields

1 -T.T
6 L 1 (7.29)

¢1 = arg 521

b

(1 - 853Tg) (X - Sy,T) - SlZSZIFGFLJ

where the front superscript f is no longer needed and has been omitted. When the
system is nonreflecting (RG =T, = 0),

[V:1p v _q = arg S (7.30)
I FG FL—O 21

the characteristic phase shift of the 2-port.

d. Characteristic Phase Shift
The foregoing equations have served to illustrate that the phase differences
considered will in general depend not only upon the characteristics of the 2-pdrt,
but also upon the characteristics of the load, and in some cases also upon the
characteristics of the generator.
If vne iIs interested in a phase diffé?enue which depends only upon characleristics
of the 2-port, the eqs. (7.2), (7.7), (7.12), and (7.17) can be considered. Of these

eqs. (7.12) and (7.17) are simplest. Thus it would seem desirable to select as

‘I'Zl
one of the characteristic phase.shifts of a 2-port. (The other would be wlz.) It

would be defined? as the phase difference between b2 and bG when nonreflecting

2This definition is in harmony with that given in IRE Standards on Antennas and
Waveguides: Waveguide and Waveguide Component Measurements, 1959, Proc. IRE 47
No. 4, 568 582,
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generator and load are connected to arms 1 and 2, respectively, of the Z-port.

The differential phase shift of a 2-port in a nonreflecting system as given by
eq. (7.27) is then simply the differential characteristic phase difference, as defined
above.

When phase differences of 2-ports are measured under different source or load
conditions, different results will be expected. The discrepancies can be called

mismatch errors, which can be evaluated by reference to the foregoing equations.

e. An Ideal Phase Shifter
The concept of an ideal phase shifter is useful for comparison purposes in
evaluating the performance of actual phase shifters. Such a phase shifter is non-
reflecting, lossless when terminated by a nonreflccting load, and nonrcciprocal.

The conditions on its scattering coefficients are

S =S =S

11 = S22 =0, and S, = V21, (7.31)

12
assuming that energy is incident upon arm 1 and there is no reflected wave in arm 2.

one notes that the phase shifts of an ideal phase shifter more closely approach
w21, than one which is not ideal, even if generator and load reflections are present.

For example, compare eqs. (7.1), (7.6), (7.13) and (7.11), respectively with

b, = ¥,y * arg (1 + FL), . (7.32)
¢i = le + arg (1 - FL), (7.33)
v = V515
bZ’bG 21 (7.34)
and
wbz,ﬁ] = ¢21. (7.35)
The differential phase shift of an ideal phase shifter is from eq (7.31) and eq. (7.24),
f i
bp = C¥21 - ¥21)- (7.36)
It is seen that the use of an ideal phase shifter obviates the need for a
nonrcflecting system, if the characterlstchphagp chift is to he produced. in the

cases of ll)bz,bG, lsz,al, and AY. However in the cases of wV and ¢1’ a non-

reflecting load is also rcquircd.

In an ideal situation, it can be seen from inspection of eqs. (7.23) and (7.31)

that the output level is not changed when the phase shifter is adjusted. However, it



can be seen that if the lossless, nonreflecting phase shifter is reciprocal (S12 =

Sy = e3¢2‘), the change in level expressed in decibels of either v, or b, is
: [1p 1 - T.T erfw’l
AL = 20 loglolfrz- = 20 log, b (7.37)
b2 1 - rgrefd Ve

The change in level is due to the interaction of reflections between generator
and load which would be suppressed by a nonreciprocal phase shifter.
0f course there would be no change in level from a lossless, nonreflecting

reciprocal phase shifter in a nonreflecting system (TG = FL =0).

f. Conclusions

It has been shown that one can reasonably choose V,4, the argument of S,1»
and wlZ’ the argument of SlZ’ as the characteristic phase shifts of a 2-port. For
a variable phase shifter, the characteristic differential phase shift Ay equals
the change in le between initial and final settings.

In measuring these quantities, it is important to inseért the phase shifter into
nonreflecting systems (FG =TI = 0), and in using the phase shifter thereafter, it
is no less important to duplicate these conditions. Any deviation from these conditions
will result in a mismatch error, and these have been analyzed (Schafer, 1960) for some
types of measurement systems.

The use of an ideal phase shifter which is nonreciprocal, lossless, and nonreflecting
obviates the need for a nonreflecting system in phase shift measurements of

Y U} , and A. However, a nonreflecting load would be rcquircd in the cases
baebgr TP
of wv and wI. It was shown that there will be no change in the output level of an

ideal variable phase shifter. However, a reciprocal, but otherwise ideal variable
phase shifter in general requires either TG or FL to vanish if level changes are to

be eliminated.
7.3. Standard Phase Shifter
a. Introduction

A standard microwave phase shifter was proposed (Magid, 1958) which utilizes an

adjustable short circuit attached to a tunable three-arm waveguide junction. This



standard is illustrated in figure 7-2. It can be shown (Beatty and Kerns, 1958) that

the change of phase of the emergent wave from the third arm can pe ideally made to

a
b3 Ib _ji- PD

| bs
03 T3
b T ohilg+be L<r=I A PHASABLE
ITTIT_ IITIT SHORT
CIRCUIT
(—— —
L~ TuerTo ORECEOML  tuvR 0 oy <ieb,
T,  ADJUST ADJUST T2 |
=0 Sy~0 -0—2-=I'L

Figure 7-2, A standard microwave phase shifter,

equal the change of phase of the equivalent load attached to the second arm, whether
or not FG = FD = 0. Practical limitations in tuning the junction result in departures
from this ideal behavior which leaves an error to be evaluated.

The difference between the change of phase of the emergent wave from arm 3 and
the change of phase of the load attached to arm 2 because of imperfect tuning is termed
the tuning error. Thié analysis relates the tuning error to amplitude changes which
are observed at the detector attached to arm 3 during the tuning procedure. Graphs
are presented for determining parameters needed to estimate the limits of tuning
error from observations of amplitude variations during the tuning procedure.

Other sources of error which are considered are those which enter in determining
the change of phase of the reflection coefficient of the load attached to arm 2.

This load is a short circuit whose axial motion in the waveguide can be measured.
The change of phase produced depends on the waveguide wavelength and the length of
travel of the short circuit. For the dominant mode of propagation in lossless rec-
tanguiar waveguide, the only dimension which affects the waveguide wave]ength is the

broad dimension. The difference between the phase shift of the reflection coefficient



of the short-circuit and the calculated phase shift of the load caused by broad dimension

nonuniformity, and by inaccuracy in determining the motion of the short circuit is
termed dimension error. Limits of dimension errors are calculated for WR-90 waveguide

in the recommended frequency range of 8.2 to 12.4 GHz, and presented in graphical

form.

b. Tuning Errors
It has been shown (Beatty and Kerns, 1958), (see also section 3.15i) that the
amplitude of b3, the emergent wave from arm 3 (connected to the detector), may

be expressed in the form

S21 S22 .,
L 31
b S S .
3. 51 32 , (7.38)
bg | (-511Tg)  Sy3Tp
(1-Tp;7p)
$317¢  (1-833Tp)

The phase of b3 with respect to an arbitrary reference, bG’ may be defined as eSG'
Adjustments of the junction are made to render as néarly as possible 831 -0
and rZi = 0. Under these ideal conditions, eq. (7.38) reduces to

b S$,,5.,T
- 21°32' L - cr

3
bG (1 - SllFG)(l - SS3FD)

L (7.39)
where C is a constant. The change of phase of the emergent wave, feSG - 1936’ when
the load is changed from intial to final settings, 1FL to fPL, may be determined from

the ratio of the final to initial values of b3 as obtained from eq. (7.39)

£ £
by B Ty : )
i T i 7.40
by Ty
This may be written to show the:thanges of phase explicitly as
£ S SN | £ sefy i
P3| I 0367 05¢) | To| TC¥L )
i ;;— . (7.41)
3 L

where f\pL and i\pL arc the phascs of the rcflcction cocfficicnts of the cquivalent
load at final and initial settings, respectively. From which it is apparent that
the change of phase of the emergent wave is equal to the change of phase of the
load attached to arm 2, wa - iwL = fiwL.
If the tuning errors are small, then departures from this ideal respomse because

of 821 # 0 and Tys # 0 can be considered separately and the contributions added. The

following analysis uses this first order approximation.
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(1) Case I

831 = 0, but in # 0. The ratio fbs/lbs, for these conditions may be derived

from eq. (7.38) and written as

£ £ i
b3 FL 1 - rZi FL
i v R (7.42)
by Tl - T Ty
from which it is apparent that the change of phase of the emergent wave, fGSG - 193G
differs from the change in phase of T by €p 1> where
i
_ 1-Th Iy,
€p 1 = argument of — (7.43)
) 1-T1,.T
2i "L
= argument of (1 - FZilrL) - argument of (1 —'PzifTL) + 2n7, where n is an integer.
In order to evaluate € 1 from eq (7.43), one would need to know PZi’ fPL and 1PL.

It is more convenient to calculate a 1limit of error assuming that one knows the
magnitudes of these quantities and the change in phase of FL’ which one controls
during the measurement. The phases are then assumed to have the values which would

give maximum €r.1° Referring to figure 7-3, in which the phase of T and the

2i
initial phase of FL are chosen to give the maximum tuning error (lim Eq I) for a

given fle, one obtains

lim ¢

s ey et .
) (fle ] 1= |ryyllrgl — 2L (740
s1in vl + nw

1. i

. [raill T | -

o - -

2 ~

= ~

f,
P15 Il

Figure 7-3. A representation of (1 — 1"2111"4_ {1 — I“Z‘fl",_ ), to show
i

maximum € 1 for a given P — i, .
L]
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Since FL = 1, and since the errors are assumed small, eq (7.44) yields

fi

lim e ;= z[rzﬂ sin (7.45)

wL!

It is noted that the tuning error from this source cannot exceed 2 |T21|radians for

any phase measurement.

One can determine |F2i[ as follows. In the tuning procedure for setting F2i = 0,
the reflection coefficient of the phasable load which is attached to arm 2, TT.I’
is nearly of unit magnitude and 531 = 0; therefore, the ratio of the maximum to
minimum response of the detector as the phase of FT.I is varied may be obtained

from eq (7.38) as approximately,

IbL] 1+ |,
5 max . 21+ 2|1y, (7.46)
Ioglpin 1 - 1Tl
or, -
20 1 sl 20 1 1+ 2|T “ r (7.47)
%21 ] = °g10( | Zil) = 17.4| 2.1|. .
3'min
(2) Case II

PZi = 0, but 831 # 0. For this case, the ratio of the final emergent wave to

the initial emergent wave may be derived from eq. (7.38) as

- 531
£y, fr (S..S.1 - S..S..)ir
3. L, 32521 7 5315220 Ty (7.48)
by rp S31 ’ .
1 +

(835551 = S31522)7 Ty,

from which it is apparent that the change of phase at the emergent wave differs from
the change of phase of the load by Er 11 where,

‘ S

1+ 31
£
(S2,5,7 = $:45,,)°T
ep. 11 ° argument of 32721 31722 L (7.49)
1+ 831

i
(832551 = S315,20° Ty
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which for [S;;5,,] << 1832521| may be written as

831
ep pp ¥ argument of |1 + ——————TF—
L

532521
S31
- argument of{l1 + —————| + 2nm. (7.50)
532521 T1,
. . ~Jvy, N .
Since IFLl = 1, one may write 1/T| = e . From a derivation similar to that

used for Er 1> it can be shown that, for small errors.

fi¢

sin | 2]

Since |821[is of the order of unity, lim €T 11 is, to the same approximation, proportional

I
[\N]

1imp
T.II

532521 (7.51)

to the inverse of the directivity ratio. One can determine this ratio as follows.

The observed amplitude variation of the side arm output when tuning adjustments are

made to set 531 = () can be shown to be
|| S s
20 logy, —> 1% = 20 log |1 + 2 31 . |2 = 17.4 31
bslnin 832521 Tp 11 S35 1. 11l (7.52)

where T'e 171 is the reflection coefficient of the phasable load, which is attached to
arm 2 when tuning for the condition Szy = 0. The magnitude IFT II[is small for this

adjustment and an estimate of its value must be made in order to evaluate the error.

c. Dimension Errors

Ideally, the change of phase of the standard phase shifter at a single frequency

is
iy A0 - B
vy ——~—;~————— radians, (7.53)
g

where Le - 11 is the distance between the final and initial positions of the short
circuit within a waveguide in which the waveguide wavelength is Ag.
The error in the change of phase of Ty due to the uncertainty in measurement of

the axial motion of the sliding short circuit is termed the motional error, e,. A
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small motional error is readily evaluated by considering the partial derivative of

fle with respect to &. In terms of this partial derivative.

=4 (fiwL]A% =4 (Mg - A2;) radians,
a8 Mg (7.54)

)

where the AR's are the errors in setting the positions of the load. If the uncertainty in
setting the initial and final positions of the load is [A%{|, then the limit of motional

error, lim €y is

lim gy = 8njag| radians = 1440 lag}) degrees.

A A
g g

In general, the waveguide wavelength will not be uniform over a particular path

(7.55)

between 2. and 2 because of variations in the dimensions. A limit of this error may
be established by calculating the difference between the change of phase of ry in a
uniform waveguide with the maximum (or minimum) dimension and the change of phase in a
uniform waveguide with the nominal dimension. Let this difference be termed the limit
of tolerance error. If the tolerance of the waveguide dimension (maximum variation from
the nominal value) is given by Aa, then a small limit of tolerance error, lim €,, Can
be obtained from
lim R ~3—~(fiwL) —=£& Aa radians

axg da (7.57)
This error limit is proportional to the total change in phase of Ty, and therefore
is presented as a fractional error, ea/fiwL, as

€ XZ

lim ?Ti_ =
wL 4a

(7.58)
d. Graphical Presentation of Results

It was assumed that the errors in the change of phase were small and therefore the
individual contributions to the error could be summed. Two graphs, figures 7-4 and
7-5, present values of |F2i|, and l831/832821|, respectively, which are used to
estimate the limits of error from the Two tuning errors given by eqs. (7.45) and (7.51)
respectively. Two more. graphs, figures 7-6 and 7-7 present limits of dimensional
errors. The graphs of ITZiland lsSl/SSZSZII are applicable for any frequency range or
waveguide size, while the graphs of limits of dimensional error are only applicable to
WR-90 waveguide over the operating range of frequencies noted on the graphs. The

equations used to construct these graphs, however, may be used for any size waveguide.

292



Figure 7-4 is a graph of the value of |F2i| plotted against the ratio of the
maximum to the minimum response of the detector attached to arm 3, in decibels, as
the tuning load (a short circuit) is moved along the waveguide. This value of ]PZi[
is to be used in eq. (7.45) to estimate lim €r.1°

Figure 7-5 is a graph of the value of |831/832821| plotted against the ratio
of the maximum to the minimum response of the detector attached to arm 3, in decibels,
as the tuning load (having small reflection) is moved along the waveguide. This value
of |831/532821] is to be used in eq. (7.51) to estimate lim ey ;. In this portion
of the tuning procedure, the magnitude of reflection coefficient of the tuning load
usually lies within the range 0.001 to 0.1. Therefore, several curves are plotted
for different IPT.III' It is only necessary to determine an upper limit to the
magnitude of I'y ;; to estimate limits of error from this source.

vFigure 7-6 is a graph of the limit of motional error plotted against the
maximum uncertainty of motion imparted by the drive mechanism to the short circuit.
Several curves are plotted for various frequencies throughout the recommended frequency
range of WR-90 waveguide.

Figure 7-7 is a graph of the limit of tolerance error per degree of change of
phase, in degrees error per degree of change of phase, applicable for any value of the
change of phase of Ty Several curves are plotted for different frequencies throughout
the recommended frequency range of WR-90 waveguide.

As an example of the use of the graphs, assume that a standard phase shifter
was made and used as follows. The 1oad attached to arm 2 is made with a short-circuit
adjustable with a micrometer of 0.0005-in. maximum uncertainty placed in a WR-90 wave-
guide of standard tolerance (# 0.003 in.). The tuning procedure for rZi was carried
out to 0.01-dB variation in the maximum to minimum response. The tuning for Sgq was
carried out to 1.0-dB variation in the maximum to minimum response with a tuning load
of maximum VSWR of 1.01. The operating frequency is 9,000 MHz. The change of phase
is 60°.
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From figure 7-4, |T,;| for a 0.01-dB variation is 0.00058.

From eq.

(7.45),

the limit of tuning error lim €p.1 is therefore 0.00058 radians or 0.033 deg. From

1072 e e
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Figure 7-5. Graph for the determination of 1531/532821‘ .
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Figure 7-7. Limit of tolerance error.

figure 7-5, [831/832821| for a 1.0-dB variation with a |y ;| of 0.005 (VSWR = 1.01)
is 0.00029. From eq. (7.51), the limit of tuning error, lim €1 11° is 0.00029 radians
or 0.018 deg. The total limit of tuning error is then 0.051 deg. From figure 7-6,
for a to}erance of the micrometer of 0.0005 in., the limit of motional error at
9,000 Mc/s is 0.38 deg. From figure 7-7, for a tolerance of 0.003 in. in the dimen-
sion of the waveguide at 9,000 MHz, the 1limit of wa&eguide dimension error per
degree of change of phase is 0.0038 deg/deg. For 60°, this is a limit of waveguide
dimension error of 0.228°. The total 1limit of error from these sources is then
0.66 deg. ’
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The above example is considered to be typical of readily constructed phase
shifters since the:.tolerances were typical (WR-90) commercial tolerances and the
tuning variations used can be attained in reasonably stable systems. However,
precision waveguide sections, and tuning loads of very small reflection coefficients
permit constructing standard phase shifters of extremely high accuracy. For example,
the motional error may easily be reduced to 0.038 deg while precision waveguides
have been constructed which have 0.00013°/deg limit of dimensional error per degree
of change of phase. With such improvement in the dimensional errors, the total limit of

error in the phase measurement described in the above example would be only 0.097 deg.

7.4. Differential Phase Shifter

It was mentioned in section 7.3 that a standard phase shifter can be constructed
by combining a short-circuited section of uniform waveguide and a tuned, single
directional coupler type of reflectometer, as shown in figure 7-2. In operation,
the phase of the side arm output tracks the position of the short-circuiting plunger,
once the tuning adjustments have been correctly made. The phase change ¢ corresponding
to a displacement £ of the short circuit is

¢ = 2BL (7.59)

where B = Zﬂ/AG and AG is the '"guide wavelength."

In this section (a modified version of Beatty, 1964e) we suggest a method of
obtaining a differential phase shifter by combining two phase shifters of the above

type with ganged short circuits, as shown in figure 7-8. The phase shifters are

UTPUT

O
PHASE SHIFTER PHASE SHIFTER

. Figure 7-8. Differential phase shifter.
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arranged so that the phase shift ¢y of the output is the difference of the phase

shifts produced by the two units, or ¢ = ¢y = 0 If the uniform waveguide sections

1°
in which the short circuits lie have identical cross sections, then ¢1 = ¢2 and
the phase shift, y = 0. But if one waveguide section has a different cutoff wave-

length AC from the other, then the phase shift ¢ is not equal to zero; instead,

- m{; ] LJ
XGz AGI (7.60)
where the guide wavelength AG is related to the cutoff wavelength Ac by
1 _1 _ 1
32 32 y 2 (7.61)
G c

The cutoff wavelengths of the two waveguides can be chosen to produce any phase
shift ¢ between zero and the limiting case when one waveguide is operating below
cutoff and the phase shift ¢y is that of a single phase shifter alone.

Such a differential phase shifter has a number of potential applications such as
the following. As the above standard phase shifter is extended to higher frequencies,
say above 30 GHz, it takes a smaller displacement to produce the same phase shift;
hence, errors in determining this displacement produce correspondingly larger errors
in the phase shift. This situation can be avoided by using a differential phase
shifter as described above, with the waveguide cutoff frequencies chosen so that the
phase of the output varies more slowly than it would if it were tracking the position
of one short circuit.

For example, at an operating frequency of 75 GHz, if one waveguide section is
WR-15 and the other is WR-12, AGI = 0.5230 cm, and XGZ = 0.4719 cm. A displacement
of 0.2615 cm will produce a phase shift of 39 degrees, which is approximatly one
ninth of the phase shift that would be produced by a single phase shifter using WR-12
waveguide.

Another application is in the investigation of uniformity of waveguide sections
and the suitability of short circuits for phase shift standards. If the arrangement
of figure 7-8 is used and the two waveguide sections are nominally identical, there
will ideally be zero phase shift of the output as the short circuits are moved. Any
phase shift which actually does occur is due to deficiencies in the short circuits
or the waveguide sections, or in both.

Another application might consist of the determination of relative displacement

from the measurement of phase shift. This would require that the motion of the
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two short circuits be independent rather than ganged. The sensitivity of phase
shift to relative displacement could be preselected by choosing the cutoff frequencies
of the individual waveguides as desired.

If the tuners are dispensed with, the differential phase shifter will still
function but with»reduced accuracy, due to the finite directivities of the directional
couplers and the reflections in the system. Errors in such a phase shifter were
investigated (Ellerbruch, 1964) to find that tuning and dimensional errors were greater
than with a single phase shifter, while the short-circuit position error was less.
Thus, the device works best for small phase changes (less than 60 degrees). However,
errors were further reduced in a different design based upon the same principle (Keys,

1968), in which two waveguide line stretchers were used.
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8. Conclusions

In precisely defining the quantity to be measured, in developing accurate weasuring
techniques and standards, and in analyzing errvors and evaluating limits of uncertainty,
waveguide and circuit theory have been indispensable tools.

Theory deals with idealized concepts and models which approximately represent
actual devices, circuits, and systems. The development of accurate measurement
methods and standards is often a compromise in which the situation in the real world
is controlled and adapted to fit a manageable theory. For example, uniform, cylindri-
cal waveguide is used which has very low loss so that the theory of lossless waveguides
will closely represent the actual situation. If losses or non-uniformities had to be
rigorously taken into account, a more complicated model would need to be used, and the
mathematics might become unwieldy or unmanageable. The use of "terminal invariant
parameters,'" as proposed by Engen, would relieve the requirement of uniformity, but
would still require losslessness.

The above point is also illustrated in section 6.6, where a more complicated
model is used to represent an attenuator and the connector pairs which comnect it into
a waveguide circuit. The additional complexity is not justified unless one requires
a reduction in the uncertainties in measuring attenuation.

In section 5.3, an impedance standard is described which can be closely approxi-
mated by a lossless section of short-circuited waveguide. The effect of small losses
is calculated without assuming any change in the wall current distribution due to
the losses. Also, the standard has in theory no current flowing across the waveguide
jeint connecting it to the measurement system. Thus the normal loss in the joint can
be safely neglected.

In devising precise definitions of quantitites to be accurately measured, it is
necessary to consider all of the assumptions and approximations which are made, then
try to specify and control the measurement system and the conditions of measurement to
fit the theory. There is always some ""fuzziness" in the evaluation of measurement
uncertainties. The reduction of this fuzziness begins with the sharpening of the
definition of the quantity to be measured and tightly specifying the conditions of
measurement.® This point is illustrated in section 6.2g with regard to definitions
of attenuation. The same principle might alsc be applied to other quantities if

accuracy requirements increase.

YIn Eisenhart (1963) the concept of a “true value" is discussed.

301



Circuit theory can sometimes be used to explain the operation of a device such
as the adjustable sliding termination of section 5.2. The termination is regarded
as an attenuator terminated in a short-circuited waveguide of variable length,
and design criteria are developed. Instead of using complicated field theory, simpler
circuit theory suffices in this instance.

The use of tuners with reflectometers was well known, but the analytical tech-
niques which were developed in section 3.15f, section 5.4, and section 5.5 permitted
the analysis and evaluation of limits of uncertainty due to imperfectly adjusted
tuners. There is always a limit to how well one can adjust a tuner due to limitations
of the equipment used to recognize when the adjustment has been correctly made.

The reduction of errors depends upon how well they are understood. The analysis
of mismatch errors in power measurements in section 4.2 led to a large reduction in
the errors due to mismatch. It became clear that it was important to reduce the
source mismatch, which could be controlled and minimized by the calibrator. Once
the source was well-matched, the limit of uncertainty could be calculated from a
knowledge of the VSWR's of the power meters. The calibrator could then quote a
conservative limit of uncertainty for this measurement.

The examples of applications given here deal only with power, impedance,
attenuation and phase shift. They represent only a small portion of the applications
of waveguide and circuit thecory to the development of accurate measurement methods
and standards. There are numerous other applications in the measurement of frequency,
noise temperature, antenna and horn gain, etc.

After an accurate measurement method and standard has been developed for a given
quantity in a frequency range where none existed before, the need for increased
accuracies and ranges of measurement continues, but sometimes at decreased urgency.
The theory and techniques described should prove useful in extending the frequency

range higher into the millimeter, sub-millimeter, infrared and optical regions.
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